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ABSTRACT
Recent advances in low-latency streaming cloud technology have
enabled remote rendering applications such as Google Stadia and
Occulus VR. Edge-clouds located close to the end-user are expected
to play an important part in improving user experience for remote
rendering application. In this paper, we investigate network latency
in edge-based remote rendering over LTE networks. We quantify
network latency and identify the roadblocks in deploying remote
rendering on existing cellular networks with extensive measure-
ments. We show that crossing traffic could severely deteriorate
latency performance and network side resource management can
solve the issue. We also find the impact of various radio configura-
tions and scheduling algorithm in LTE networks. Our results shed
light on how the network side and client side can cooperatively
reduce network latency for emerging applications.
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1 INTRODUCTION
The emergence of Mobile Edge Clouds (MEC, also known as Multi-
access Edge Cloud) has inspired researchers to utilize the com-
puting resources on MEC to improve the performance of various
mobile applications, such as cloud gaming [14], Virtual Reality
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Figure 1: Edge based remote rending over LTE

(VR) [15, 18, 28], and 360° video streaming [19, 25, 26]. The com-
mon idea behind these approaches is to offload the computation
from the mobile device to the cloud server via a remote rendering
system. The server in the cloud processes the input content, per-
forms expensive graphics rendering, and encodes the result scenes
into a video stream. The mobile client simply displays video frames
and forwards the user control signals back to the server. Such a
remote rendering approach can effectively deliver the visual quality
that high-end workstations can achieve to low-end mobile devices
with a simple server-client based architecture. However, it also
increases the overall system response time and makes the user ex-
perience largely depend on the network latency between server and
client. Since MEC was designed to push the cloud resources closer
to the mobile user and significantly reduce the latency, deploying
the rendering server on MEC provides a unique opportunity to
meet the requirements of the most latency-sensitive applications
such as VR and gaming.

Previous studies have shown promising results of remote ren-
dering from MEC [28]. Some existing work [15, 18] only uses Wi-Fi
to evaluate system performance, while the others characterize the
underlying LTE performance with ping latency [14, 19]. State of
the art LTE-VR [28] uses LTE traces to breakdown the network
latency and analyze the potential latency bottleneck. However, this
analysis is based on an emulated edge testbed rather than a real one.
A comprehensive performance characterization of LTE and MEC
along with various factors that affect is still missing. It is urgent for
us to study end-to-end network latency rather than wireless part.
Moreover, LTE-VR did not study how network side bearer setting
and scheduling algorithms would affect network latency.
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In this paper, we use a real MEC testbed to deploy a remote
rendering system and stream real-time video traffic over 4G/LTE
networks. Our edge cloud server directly connects to LTE network
as shown in Figure 1. The mobile device communicates with the
edge server through the LTE network. In edge based scheme, the
server is directly connected to the gateways in the LTE network.
We breakdown the end-to-end latency and study how different envi-
ronment settings, radio configurations, and scheduling algorithms
affect system performance.

Our findings can be summarized as following:
• The majority of the end-to-end latency comes from the net-
work. The network latency for a full video frame varies
significantly over time. We compare with the ping latency
and identify the roadblocks.

• While crossing traffic from the same phone or other phones
makes the latency even worse, this can be eliminated by
enforcing service differentiation for prioritized traffic. We
validate it by configuring bearer with different quality class
identifiers (QCI) on the commercial LTE testbed.

• Applying different scheduling algorithms helps further re-
duce latency and enhance overall system throughput when
multiple users are streaming simultaneously. We quantify
latency under three mainstream scheduling algorithm and
analyze the tradeoffs.

2 BACKGROUND AND RELATEDWORK
2.1 Remote Rendering Systems
The idea of offloading rendering computation to a remotely con-
nected server was initially proposed to share graphics processing
resources over networks when computers were not powerful to
run graphics rendering. A survey [27] summarized how remote
rendering has been evolving over years. Recently, the adoption of
remote rendering mainly focuses on cloud gaming and mobile VR.

Cloud Gaming: By moving the game rendering to the cloud,
cloud gaming enables users to play the latest games on any device
any time without expensive game console hardware. However, a
satisfying gaming experience requires a less than 100 ms interac-
tion latency [9], which is defined as the time it takes from the user
generating a control signal to the corresponding visual feedback
showing on the screen. OnLive [9], the pioneer of this industry
once claimed to achieve 80 ms latency but the measurement exper-
iments [11] showed a much higher observed latency even with a
wired broadband network connection. A study [14] measured the
latency performance of running GamingAnywhere [11] (a popular
open source cloud gaming platform) over mobile networks. How-
ever, the test system did not actually deploy the game server on a
MEC and used the ping latency to an edge server to approximate
the network latency. Even with this simplification, the results show
that the end-to-end interaction latency over mobile networks can
barely meet the 100 ms requirement. Outatime [16] is the state-of-
the-art in this area and proposes speculation execution to enable
systems tolerate longer latency up to 256 ms.

Mobile VR: The emerging development of Virtual Reality (VR) is
expected to expand the market size of VR headsets to over 34 billion
within five years[24]. There are two types of headsets currently
available in the market: tethered VR systems (e.g., Oculus Rift) that

requires a wired connection between the headset and a powerful
workstation, and mobile VR (e.g., Samsung GearVR) that relies
on the mobile hardware within the headset to perform rendering
and display. Mobile VR provides the ultimate mobility but cannot
match the rendering quality offered by tethered VR due to the
performance gap between mobile and desktop GPU. Several works
have proposed to improve mobile VR quality by adopting remote
rendering. However, compared to cloud gaming, mobile VR has a
even more stringent latency requirement. Research [5] shows that
VR applications require the latency between any head movement
and displaying the corresponding visual feedback on the screen to
be less than 25 ms.

Luyang et al. [18] designed a simple remote rendering frame-
work to move all rendering computation to a remote server and
optimized the system to achieve up to 90 Hz refresh rate via WiGig.
Mangiante et al. [19] targeted a specific VR application: 360 degree
video streaming, and proposed to use MEC for FoV rendering. How-
ever, the work did not present a full system or report the actual
end-to-ed latency that we care about. Furion [15] separated the
background scene from the foreground objects and used the remote
server to render background scene only. Enabling clients to ren-
der locally makes the responsiveness independent from network
latency, and therefore allows the rendering server to be pushed
further away from the mobile client. However, the optimization
of Furion only applies to the foreground object movements and
the head movements that change only the viewpoint orientation.
Furion relies on pre-fetching to accommodate other motion that
changes viewpoint location (e.g., moving the avatar around in the
virtual world), and the network bandwidth and latency again play
a significant role.

2.2 LTE Resource Management
In this paper, we discuss how LTE resource management impact
user quality of experience for remote rendering streaming appli-
cation. LTE resource management coordinates network resources
between different users to improve resource utilization and user
experience. Figure 1 shows simplified LTE network architecture,
consisting of the access network (the base stations) and the core
network (only gateways shown in the figure). In LTE networks,
resource management is enforced by both the base station and
the core network. The base station allocates radio resources to a
user for data transmission in the format of specific frequency slots
and time slots. In the core network, the gateways handle resource
allocation among base stations.

In LTE networks, resources are allocated at the per-bearer level.
The Bearer is the logical channel carrying data packets requiring
the same service quality. There are two types of bearers in LTE:
default bearers and dedicated bearers. When a user registers in
the EPC, a default bearer is built promptly to offer best-effort data
service. To improve user experience for prior packet flows like
Voice over LTE, a dedicated bearer is set up on demand. The op-
erator classifies packet flows based on traffic flow templates [2].
After the EPC identifies prior packet flows, dedicated bearer setup
procedure is triggered and the dedicated bearer is configured a
specific QoS Class Identifier (QCI) and bearer settings. The Policy
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Table 1: Standardized QCI characteristics[1]

QCI Type Priority Delay budget (ms) Loss rate

3 GBR 3 50ms 10−3

6 Non-GBR 6 300ms 10−6

9 Non-GBR 9 300ms 10−3

and Charging Rule Function (PCRF) in the EPC is responsible for de-
termining appropriate QoS parameters for each bearer. The bearer
configurations are attached with each bearer as QCI, with a detailed
specification in [1]. The QCI specifies resource type traffic priority,
delay budget, and loss rate. We select three representative ones as
shown in Table 1. In total there are 17 QCI, with priority ranging
from 0.5 to 9, where 9 denotes the lowest priority. Guaranteed Bit
Rate (GBR) bearers are served with higher priority than non-GBR
bearers. Delay budget is the allowed maximum one-way network
delay in the LTE network, defined from PDN to UE. Loss ratio is
allowed maximum packet loss ratio.

After bearer setup, LTE entities schedule resources based on
bearer configurations. Resources are first granted to GBR bearer
first, then non-GBR bearers share the remaining while considering
their priority. The scheduling algorithm is not specified by 3GPP
so operators have implemented proprietary scheduling algorithms
in practice. According to [8], though most of the operators use
proportional fair for resource allocation, their implementation takes
various factor into consideration. There is plenty of research on
how to schedule resources to maximize efficiency and guarantee
user fairness [7]. However, researchers emphasize the theoretical
merits while arguably discuss real-world impact. Since operator
side scheduling is proprietary, testing on real testbed can represent
real-world scenarios.

Although most bearer settings are specified in [1], the operators
implement radio resource management with different configura-
tions. There are various configurations specific to each function in
LTE. Among these configurations, packet corruption recovery re-
lated configurations are verified to affect latency significantly based
on the previous study in [28]. Specifically, we study two configu-
rations at Radio Link Control (RLC) layer, RLC mode and retrans-
mission timer. RLC layer offers optional reliable packet delivery to
upper layers by automatic repeat request. RLC mode determines
whether the reliable transmission is required. The retransmission
timer is the timer to trigger retransmission, which might prolong la-
tency. In this paper, we show how radio configuration affect latency
and scheduling algorithm affect latency. We compare configura-
tions for different QCI bearers and find following radio layer packet
recovery related configurations.

3 MEASUREMENT SETUP
Testbed setupWe evaluate end-to-end latency with an edge-based
remote rendering video streaming system on a private LTE testbed
as shown in Figure 1. The LTE testbed consists of an eNodeB with
LTE release 12, a data interceptor and a co-located edge server.
The eNodeB manages two cells running on band 30 with 10MHz
channel bandwidth. The packet interceptor user plane function
(UPF) implements local breakout and routes edge cloud traffic to

the edge server. Other general traffic are routed via the regular path
onwards to the SGW and PGW. The PGW is connected to the Packet
Data network (PDN). The testbed establishing dedicated bearers
for different QCIs and routing traffic through dedicated bearers
based on IP/Port/Protocol filters. The edge server is deployed as a
VM with eight CPU cores and 16GB memory. The MEC platform
complies with ETSI specifications [10]. We tested with Samsung
Galaxy S7 and Samsung Galaxy Note 9.
Remote Rendering Application Since our main focus is on mea-
suring network side latency, we develop a simplified application
to simulate the behavior of the thin-client system in [18]. On the
server side, we read a video file (H.264, 1080p, using I and P frame
only) and store every video frame in memory. Each frame size
ranges from 41 KB to 368 KB with an average of 58.3 KB. The client
sequentially transmits a fetch request for one frame and the server
replies with the frame data upon receiving the request. After receiv-
ing the full frame, the client uses MediaCodec that calls hardware
codec APIs to decode the video and display on the screen. We use
TCP in our experiments to guarantee reliable delivery. In an ac-
companying paper, we have also observed that TCP outperforms
UDP for VR delivery using MEC [25]. The client only runs the
streaming application unless specified. This simplified application
allows us to accurately measure the end-to-end system latency for
every frame and easily separate the latency caused by network and
mobile device. We consider rendering and transcoding latencies on
the server to be negligible. Note that cloud platforms typically take
5ms to process one frame [21].
Data collection and analysisWe collect three types of traces to
quantify network latency: (i) the application logs on server and
client; (ii) the LTE network signaling traces with MobileInsight
[17]; and (iii) the TCP/IP traces on clients and servers with tcp-
dump. We measure end-to-end latency at the client side. Since the
server processing latency is negligible, the overall latency is broken
down into network latency and client latency. To compare client
latency and network latency, we further extract network latency
by timestamping when the frame request was sent and when the
frame was received. In total, we analyzed 35.6 million frames traces
in both testbed and simulation.

4 LATENCY MEASUREMENTS
4.1 System latency overview
We begin by looking at overall latency performance and dissect
network latency from the whole. The end-to-end latency composes
of network latency, server-side latency and client-side latency. Here
we define network latency as the time elapsed from the packet
sent to the time response received at the client side application
layer. Since server-side only transmit pre-render frames in our
experiments, the server side latency is negligible. As shown in
Figure 2, device latency is stable compared with network latency.
Also, network latency constitutes 77.5% of total latency (96.1 ms of
124.0 ms). The medians are 81 ms and 112 ms for network latency
and total latency. Though device side latency depends on device
capability, we believe Samsung S7 and Note 9 are mid to high
performance phone models.

We then investigate what is the root cause of abnormal network
latency. As compared with the ping latency, the median of ping
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Figure 4: Latency with different QCI

latency is only 61 ms and the minimum is 31 ms. Since ping latency
is collected using ICMP probing packets, the latency shall be longer
than data packet. The reason why the ping latency is less than
the network latency for the streaming application can be one of
the followings: processing latency, transmission latency and queu-
ing latency caused by congestion. Since there is only one device
connected with the cell during testing, there should be minimum
congestion. As shown in Figure 2, the minimum network latency
is only 61 ms, which is far beyond standardized 4ms processing
delay limits [3]. So we can safely assume the prolonged latency is
transmission latency.

We further investigate the root cause of prolonged transmission
latency. We prove that transmission latency is not prolonged by
limited bandwidth but the retransmission. With 256QAM enabled,
peak throughput is around 50.7Mbps during frame transmission.
So the normal transmission latency for a single 58KB frame only
takes 9 ms. In our experiments, 0.4% packets are retransmitted by
TCP, which is higher than previously measured 0.06% in [12]. The
retransmission delay is 154 ms on average. Packet loss can happen
at wireless channel, interceptor or the end hosts. We validate that
the wireless channel packet corruption are all recovered by RLC
retransmission. Then we can conclude that packet loss happen
at either the interceptor or the end hosts. We further check the
interceptor logs and validate that no packets are discarded. So we
conjecture that TCP retransmits packet because packets are lost at
the end hosts.
Takeaway: Network latency is the key driver of overall latency,
rather than device processing latency. Excessive network latency
mostly comes from TCP retransmission rather than frame trans-
mission.

4.2 Congestion scenarios
As discussed in the previous section, TCP retransmission prolong
network latency. Another portion of network latency is queuing
latency especially when the base station need schedule limited radio
resources between multiple users. According to a recent study [6],
most base station tends to serve only one user at a time, which add
queuing latency to other waiting users. In this section, we study
how congestion prolongs queuing latency.

We conducted experiments with two congestion scenarios: sin-
gle phone and cross phone scenario. In the single phone scenario,
the VR application and the traffic generator run on the same phone.
The single phone scenario mimics the case of simultaneously down-
loading large files (at data rate of around 10Mbps) or streaming
background video frames (at data rate of around 6.8Mbps) [15]. In

the cross phone scenario, two applications run on different phones.
The cross phone scenario emulates a congested cell with crossing
traffic.

Experiment with testbed shows that under crossing traffic the
overall latency will increase significantly. As shown in Figure 3,
latency increases in both single phone scenario and cross phone
scenario. In single phone scenario, per-frame network latency with
crossing traffic increase by 56.9% (86.3 ms to 135.4 ms). Latency 75
percentile increase from 91 ms to 168 ms. In cross phone scenario,
per-frame network latency with crossing traffic increase by 8.2%
(86.3 ms to 93.4 ms) for video traffic and 19.6% (86.3 ms to 103.2 ms)
for file traffic. Latency 75 percentile increase from 91 ms to 100 ms
and 103 ms respectively.

The intuitive solution to avoid competition between latency-
sensitive traffic and latency-insensitive traffic is to guarantee la-
tency requirements by differentiating these two traffic and prior-
ity latency sensitive ones. In current streaming frameworks, pre-
fetched based scheme is commonly adopted since it masks long
latency to users [15, 23]. However, when pre-fetching fails, the user
need to wait entire round trip for emergent frame request. The user
tolerance difference motivates us to differentiate emergent frame
request from pre-fetching frame requests.
Takeaway: Crossing traffic significantly prolongs network latency,
especially for crossing traffic from the same device. Network side
should differentiate emergent streaming traffic and serve with
higher priority.

4.3 Radio configurations
As introduced in 2.2, each operators can customize radio configu-
rations to guarantee service quality at different network entities.
For example, different operators might assign different profiles for
the same VoLTE traffic. It is often neglected by the researchers
how radio configuration can make impacts beyond radio connec-
tion part. In this section, we would show how inappropriate radio
configuration deteriorates latency performance. Since in 5G the
layering design does not change significantly and studied radio
configurations are still effective [4], the following findings still hold
in 5G.

We first examine the generality of testbed radio configurations
by comparing with existing configurations in operational LTE net-
works. We analyze traces from LTE-VR database [28], which in-
cludes 3.2 million cellular messages collected over 8 months on four
major operators in the U.S. Our analysis of operational LTE net-
works aligns with our testbed setting. We checked configurations
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from all four major operators by examining RRC signaling mes-
sages [4]. All of them use RLC AM mode for default bearer, which
is the same in our testbed. In addition, the RLC re-transmission
timer range from 35 ms to 60 ms in all four operators with 38 ms on
average, which corresponds with 40 ms setting in the testbed. Thus
we believe testbed configurations align with real-world scenarios
and measurement should be consistent with experiments in the
wild.

To investigate the impact of radio configurations, we consider
three QoS with significantly different QoS parameters listed in
Table 1. Note QCI 3 and QCI 6 are for the dedicated bearer and QCI
9 is for default bearer. We first show a comparison of two non-GBR
bearers, QCI 6 and QCI 9, the former with higher priority than
another. We then show a comparison of QCI 3 (GBR bearer) and
QCI 9 (non-GBR bearer). Since the single phone experiments show
more latency, we adopt the experiment setting of single phone
generating the crossing traffic.

We first compare two non-GBR bearers setting of QCI 6 and QCI
9. We observe latency reduces by sending traffic through dedicated
bearer with QCI 6 as shown in Figure 4. Per frame network latency
with the dedicated bearer (QCI 9) is smaller than the default bearer
(QCI 6). Average latency reduces by 26.7% (135.4 ms to 106.9 ms).
The 75 percentile reduces from 177 ms to 115 ms. From the above
analysis, we can draw the conclusion that network side service
differentiation can reduce network latency significantly.

We then compare non-GBR bearer of QCI 9 with GBR bearer of
QCI 3. The network should allocate resources to QCI 3 bearers prior
to QCI 9 bearers. However, We observe that sending traffic with
QCI 3 does not reduce latency. Average latency increases by 55.6%
(135.4 ms to 210.7 ms). The root cause is improper radio configura-
tions under GBR bearer that prolong packet loss recovery latency.
RLC layer configuration for QCI 3 bearer is unacknowledged (UM)
mode in testbed. RLC mode defines whether RLC layer recovery is
enabled. Since RLC is configured as UM mode, packet loss recovery
solely rely on TCP re-transmission, which could potentially prolong
latency. We also get testbed side limited logs to verify our findings.
Based on eNodeB side records, the queuing latency for dedicated
bearer is 8.2 ms while for default bearer is 16.0 ms. Default dearer
IP packet discard rate is 0 while dedicated bearer IP packet discard
rate is 1.2 Kbps.
Takeaway: Prioritizing streaming traffic can help to reduce latency
only when radio configurations are properly configured. Config-
uration sacrificing reliability help to reduce queuing latency but
increase transport layer re-transmission, which prolong overall
latency even under good channel quality.

4.4 Scheduling algorithm
The scheduling algorithm is essential to resource allocation. The
base station dynamically schedules current resources based on user
demands, channel conditions and other factors.

To understand latency under various scheduling algorithm in a
large scale setting, we further evaluate our design in a simulation
platform [22]. We measure latency with and without our design
under various scheduling algorithms to show the generality of our
design.

Our simulation setting is similar to [22]. Users are randomly
distributed and follow a randomwalk mobility pattern. We simulate
with 2 to 20 users per cell and 4 cells. We repeat each simulation 10
times. We use the same user traffic distribution, where each user
runs video traffic and a constant bit rate traffic generator. To avoid
TCP retransmission delay complicates latency comparison between
different scheduling algorithms, we use UDP traffic. As we observed
in experiment results, the priority factor can influence streaming
performance with the same bearer setting. Specifically, we use RLC
UM mode to assure the streaming performance is solely controlled
by the scheduling priority.

We compare network latency for three scheduling algorithms,
proportional fair, Modified LDWF, and EXP rule. In proportional
fair scheduling, resources are allocated based on user metric α ,
α = ri/R̄i , where ri is the estimated bitrate and R̄i is the histori-
cal average bit rate for user i . The proportional fair is the most
commonly used scheduling algorithm because of its convenience
and efficiency [8]. In Modified LDWF, a delay related priority fac-
tor wi = −

log(Pkt_loss)
Tarдet_delayHOL_delay is added so the metric α is

α = wi
ri
R̄i
. In EXP rule, an exponential function of the end-to-end

delay is adopted, where the metric became exp(wi−w̄
1+

√
w̄
) and w̄ is the

average ofwi for all users. The EXP rule is shown to have the best
performance even though the complexity is high [22].

As shown in Figure 5a, average latency increases as the number
of users increases. The EXP performs best compared with PF and
M-LDWF. If crossing traffic is added, latency further increases,
especially with PF scheduling algorithm. As shown in Figure 5b,
with crossing traffic, average latency increases by 752.3% with PF
(69.1 ms to 519.9 ms), 73.7% with M-LWDF (118.5 ms to 205.8 ms)
and 102.1% with EXP algorithm (92.4 ms to 186.7 ms) in 10 users
case. Latency increases most in PF algorithm compared with other
two scheduling algorithm.

We also check how dedicated bearer affect latency. With PF
algorithm, prioritizing streaming traffic barely affect latency. PF
algorithm allocates resources based on user historical link rate. If
the user is with bad signal strength, it is hard for the user to get
a fair share of radio resources. With M-LWDF or EXP algorithm,
prioritizing streaming traffic can both reduce latency. As shown in
Figure 5c, prioritizing streaming traffic with dedicated bearer can
reduce latency by 43.7% with PF (519.9 ms to 226.9 ms), 8.8% with
M-LWDF (205.8 ms to 186.7 ms) and 16.7% with EXP algorithm
(186.7 ms to 154.6 ms) in 10 users case. Since streaming traffic
is identified with higher priority, more resources are allocated to
streaming traffic. Especially when packets are approaching delay
limits, the priority metric will become very high.
Takeaway: M-LWDF and EXP serve streaming traffic with less
latency than PF since delay limit is considered in scheduling. By in-
corporating priority factor for different QCI, we can further reduce
network latency for streaming traffic.

5 DISCUSSION
Our design applies to various streaming applications with flows
that require different quality of service. For example, pre-fetching
based VR puts different weights on different video frames based



NEAT’19, August 19, 2019, Beijing, China Z. Zhang, et al.

2 4 6 8 10 12 14 16 18 20

0.1

0.2

0.3

Number of users

N
et
w
or
k
la
te
nc
y
(m

s)

PF M-LDWF EXP

(a) wo/ crossing traffic

2 4 6 8 10 12 14 16 18 20

0.1
0.2
0.3
0.4
0.5

Number of users

N
et
w
or
k
la
te
nc
y
(m

s)

PF M-LDWF EXP

(b) w/ crossing traffic - default bearer

2 4 6 8 10 12 14 16 18 20

0.1
0.2
0.3
0.4
0.5

Number of users

N
et
w
or
k
la
te
nc
y
(m

s)

PF M-LDWF EXP

(c) w/ crossing traffic - dedicated bearer

Figure 5: Simulation results

on whether that frame is pre-fetched or emergent. With the pre-
fetching algorithm, the state of the art can guarantee on-time de-
livery of VR frames with probability >90% [23] when end-to-end
latency does not exceed 200ms. (Linear regression-based viewpoint-
prediction, good and fair signal strength, tolerable network jitters)
Therefore, our design would help to reduce latency for emergent
frames. Our method is compliant to LTE standard and compatible
with existing flow classification. The network side relies on traffic
flow template to identify service [2]. According to the specification,
there are 13 packet filter can be added to filter a specific traffic type,
including IP address, port number, protocol type, etc. Therefore, it
depends on the operator to specify certain packet filters to specify
emergent streaming traffic.

There are several practical issues to consider. First, considering
delay limits at the scheduler would incur computation delay. But the
prevalence of GPU is verified to increase the scheduler computation
power [13]. Second, prioritized VR traffic competes with other
dedicated bearer traffic. In the current operational LTE network,
only VoLTE is using dedicated bearer for transmission. A naive
solution is to prioritize VoLTE over VR traffic. The priority factor
shall be cautiously designed so that voice call quality will not be
affected. Third, setting up dedicated bearer on demand is time-
consuming, which would take an extra round trip from the base
station to the PCRF. To avoid initialization delay, we suggest the
network to initiate dedicated bearer as any streaming traffic is
detected. This could be a greedy solution though the risk of abusing
dedicated bearer increases.

The final concern is how to avoid user abusing dedicated bearer.
In this direction, the intuitive idea is to borrow some ideas from
current VoLTE implementation. In current VoLTE, the user can
only use VoLTE service after authenticated. Since call signals are
directly processed by the chipset, the OS has no access to inject
data in voice packets. As for signaling packets, unprivileged apps
can easily obtain the VoLTE interface information and inject non-
VoLTE data packets. But the exposed vulnerabilities may only exist
for certain protocols and ports. Learned from previous VoLTE de-
sign, we should require the OS to employ permission control. The
practical approach is to distinguish network interface dedicated to
emergent streaming traffic and other privileged traffic for Internet
data access. On the hardware side, the chipset should also check
the traffic coming from the software’s network interface and avoid
unprivileged app use dedicated bearer. This is possible in dedicated
chipsets for emerging applications [20].

6 CONCLUSION
In this paper, we analyzed network latency in edge based remote
rendering streaming applications over real LTE testbed. We iden-
tified the roadblocks in further reducing latency with extensive
measurements. We quantitatively showed that crossing traffic could
severely deteriorate latency performance and network side resource
management can solve the issue. We also investigated the impact
of various radio configurations and scheduling algorithm.
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