
Temporal Correlation of the RSS Improves
Accuracy of Fingerprinting Localization

Mei Wang∗, Zhehui Zhang∗, Xiaohua Tian∗†, Xinbing Wang∗
∗School of Electronic, Info. & Electrical Engineering, Shanghai Jiao Tong University, China

†National Mobile Communications Research Laboratory, Southeast University, China
{mary1994, qiaomai, xtian, xwang8}@sjtu.edu.cn

Abstract—Indoor localization based on RSS fingerprinting
approach has been attracting many research efforts in the
past decades. Recent study presents a fundamental limit of the
approach: given requirement of estimation accuracy, reliability of
the user’s localization result can be derived. As highly accurate
indoor localization is essential to enable many location based
services, a natural question to ask is: can we further improve the
accuracy of the localization scheme fundamentally? In this paper,
we theoretically show that the temporal correlation of the RSS
can improve accuracy of the RSS fingerprinting based indoor
localization. In particular, we construct a theoretical framework
to evaluate how the temporal correlation of the RSS can influence
the reliability of location estimation, which is based on a newly
proposed radio propagation model considering the time-varying
property of signals from a given Wi-Fi AP. Such a theoretical
framework is then applied to analyze localization in the one
dimensional physical space, which reveals the fundamental reason
why performance improvement of localization can be brought by
temporal correlation of the RSS. We further extend our analysis
to high-dimensional scenarios. Experimental results corroborate
our theoretical analysis.

I. INTRODUCTION

Indoor localization based on RSS fingerprinting approach
has been attracting many research efforts in the past decades,
where the basic idea is to first construct RSS fingerprints
database during the training phase, and then perform location
estimation by matching the user’s reported fingerprints in the
database during the localization phase [1]. Indoor localization
systems based on the approach have been developed with
different flavors. Embedded sensors of mobile devices are
exploited to improve accuracy of the location estimation [2],
[3], crowdsourcing paradigm is used to reduce the cost of
site survey in the training phase [4], and machine learning
algorithms are leveraged to shorten the delay of localization
process [5]–[7].

The spring-up of RSS fingerprinting based indoor localiza-
tion systems promotes efforts to study performance bounds
of such systems both empirically and theoretically. Empirical
studies evaluate performance of localization systems with
comprehensive experiments. Liu et al. present their exper-
imental results showing that the location estimation error
could be over 6m [2]. Chandrasekaran et al. provide empirical
quantification of accuracy limits of RSS localization, which
is based on extensive experimental results conducted over a
uniform testbed [8]. Such results could be helpful references
for system implementation but hardly provide insight into the

RSS fingerprinting approach. Some theoretical studies about
localization performance bound are based on Cramér-Rao
Bound (CRB) analysis [9]–[11]; however, that framework is
based on the Log-Distance Path Loss (LDPL) radio propaga-
tion model [1], [8], which however has been proved inaccurate
in the indoor localization scenarios [12].

Recently, Wen et al. present a theoretical investigation
on RSS fingerprinting based indoor localization, which re-
veals fundamental limits of the localization methodology [13].
Specifically, the work derives a close-form expression for
calculating the probability that a user can be correctly localized
in a region of certain size, which is termed as localization reli-
ability. The basic idea of the derivation is to build a probability
space induced from RSS samples obtained from the training
stage. The location determination process can be regarded
as a mapping from the sample space to the physical space;
therefore, the probability a user can be correctly localized in a
certain region is equal to the probability that certain outcomes
of RSS measurements appear, so that the localization system
can determine the user’s location to be in the region. As
highly accurate indoor localization is essential to enable many
location based services, a natural question to ask is: can we
further improve the performance of the localization scheme
fundamentally?

In this paper, we show that the temporal correlation of the
RSS can improve accuracy of RSS fingerprinting based indoor
localization. We first construct a theoretical framework to
evaluate how the temporal correlation of the RSS can influence
the reliability of location estimation, which is based on a
newly proposed radio propagation model considering the time-
varying property of signals from a given Wi-Fi AP. Based on
such a model, we build a new sample space from the training
phase, where each outcome in the space is extended with a new
temporal dimension. With such a framework, the fingerprints
used to estimate the users location are actually the correlation
of the RSS observed from the AP.

We then apply such a theoretical framework to analyze
localization in the one-dimensional physical space, which
reveals the fundamental reason why performance improvement
of localization can be brought by temporal correlation of
the RSS. An interesting finding is that: the boundary in
the sample space, which is used to distinguish one physical
location from another, in fact should be one edge of hyperbola,
instead of a straight line as believed in [13]; moreover, we
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find that the curvature of the hyperbola is related to the
correlation of the RSS in the sample space. Such a result can
fundamentally improve accuracy of location estimation of the
RSS fingerprinting based system.

We further extend our analysis to high-dimensional sce-
narios, where two-dimensional physical space and high tem-
poral dimensions are taken into account. The major chal-
lenge incurred by the high dimension is the large number
of variables, which hinders revealing the insight of the RSS
fingerprinting approach. We derive a transformation matrix,
which represents the linear affine transformations in Euclidean
space like translation, rotation, and shearing, to deal with
the challenge. We theoretically prove that the boundary in
the sample space dividing two physical locations is a high-
dimensional hyperbolic plane.

The remainder of the paper is organized as follows. Sec-
tion II presents related work. Section III illustrates the ser-
vice model. Section IV presents our analysis of localization
with one-dimensional physical space, sample space and two-
dimensional temporal space. Section V extends our analysis
to higher dimensional cases. Section VI presents experimental
results. The conclusion remarks and future work are provided
in Section VII.

II. RELATED WORK

A. Fundamental Limits of RSS Fingerprinting Approach

Wen et al. present a theoretical investigation on RSS finger-
printing based indoor localization, which reveals fundamental
limits of the localization methodology [13]. Specifically, if a
user’s real location is at Q, the work derives a close-form
expression of the probability R that the user can be localized
in the δ neighborhood of Q, where δ and R are localization
accuracy and reliability, respectively.

With the RSS fingerprinting based localization approach,
RSS fingerprints obtained from the training stage form a
sample space, based on which a user’s location in the physical
space can be estimated. The location determination process
can be regarded as a mapping from the sample space to the
physical space. If outcomes of RSS measurements fall into
the event region E, then the localization system can correctly
determine the location of the user to be in the δ neighborhood
of Q; therefore, the localization reliability is equal to the
probability that outcomes of RSS measurements fall into the
event region E. By constructing a general radio propagation
model based on field observations of real localization systems,
probabilities for outcomes of RSS measurements in a location
can be presented, which turns out to be following Gaussian
distribution. Consequently, calculating the localization relia-
bility is to first find the event region E in the RSS sample
space, and then perform integration over the region E for an
Gaussian probability density function (PDF).

Although utilizing a general radio propagation model, the
study in [13] is distinguishable from the model based lo-
calization because the radio propagation model is not used
to derive geometric relationships between signal transmitters
and receivers, such as distance, time of arrival (ToA), time

difference of arrival (TDoA) or angle of arrival (AoA) [1].
That is why the radio propagation model used in [13] only
assumes that the mean of RSS readings varies with respect
to locations but does not specify how the mean will vary.
This is in contrast to the Log-Distance Path Lose (LDPL)
model used in the model based localization and CRB analysis
[9]–[11], where the mean varies with respect to locations
logarithmically. Moreover, interesting findings about the shape
of the event region E are presented in [13], where skillful
mathematical techniques are demonstrated.

Our study constructs a new radio propagation model consid-
ering the temporal correlation of the RSS, which is not taken
into account in [13]. The later discussions are to reveal that
the boundary distinguishing one location from another in the
sample space is different from that shown in [13], and the
new boundary provides a more accurate location estimation.
Compared with the pure theoretical analysis presented in [13],
we present experimental results to validate our theoretical
analysis.

B. Temporal Information of RSS Utilized for Localization

Kaemarungsi et al. study properties of the RSS for finger-
printing based localization using Wi-Fi [14]. Comprehensive
experiment results reveal two important features of the RSS:
First, the mean and variance of the RSS in one location basi-
cally remain the same over time; second, the auto-covariance
function of the RSS in one location has the same shape for
separate time-series. Based on such two observations, our work
in this paper models the RSS observed in one location as a
stationary process. Fang et al. propose a localization approach
based on the dynamic system and machine learning technique
[6]. Such an approach estimates the user’s location by the
state consisting of RSSes observed in different times and
locations. However, the simple combination of spatial and
temporal information does not reveal the essence how the
temporal information can be utilized for localization, where the
RSS observed in different times can be considered as multiple
measurements of fingerprints.

Most of the current studies for utilizing temporal informa-
tion of the RSS for localization are in a machine-learning
based manner [5], [7], where the convincing explanation how
the temporal information can influence the performance of
the localization process is still unavailable. In this paper, we
initiate the theoretical study on this issue.

III. THEORETICAL MODEL OF LOCATION ESTIMATION

Consider an indoor space, which can be modeled as one or
two dimensional Cartesian space denoted by L ⊂ R or L ⊂
R2, respectively. Examples of one dimensional model include
hallway and corridor. A user’s location in the physical space S
can be denoted by r = r1 or r = (r1, r2) with corresponding
dimensions. Based on the localization database constructed
in the training phase, a sample space of fingerprints can be
induced, which is denoted by Ωn and n is the number of
access points (APs) can be sensed in the physical space. In
the training phase, the site surveyor collects fingerprints of



Fig. 1. Theoretical localization model.

APs in a one-by-one manner at a given location. For an AP,
the surveyor samples the observed RSS at certain frequency.
Consequently, if there are n APs and each AP is sampled
m times, then a point x in the RSS sample space is in the
following form: 

x1,1 x1,2 . . . x1,m

x2,1 x2,2 . . . x2,m

...
...

. . .
...

xn,1 xn,2 . . . xn,m


where xi,j means the RSS observed with respect to APi at
jth time point. We say this is an n-dimensional sample space
and the temporal dimension of sampling is m.

As the radio propagation in the indoor environment is
influenced by many factors such as path loss, shadowing,
fading and multipath effect, the signal can be observed in a
location is usually modeled as a random process, which can
be denoted as

X(r, t) = S(r) + σY (r, t), (1)

where r is the location of the observation and t represents the
vector of time points at which RSSes are observed. S(r) is
the trend model of the signal with respect to position r in the
perspective of stochastic processes, and σ is the amplitude of
noise. Y (r, t) is the joint Gaussian distribution of temporal
noise series at location r.

According to extensive experimental results and theoretical
analysis [15]–[17], the mean and variance of the RSS in one
location basically remain the same over time and the auto-
covariance function of the RSS in one location has the same
shape for separate time-series, such a random process can be
stationary and ergodic, with

S(r′) ≈ S(r) +▽S(r)(r′ − r) (2)

In the localization phase, a user reports observed RSSes to
the localization server, which then estimates the corresponding

location by matching the reported fingerprints in the finger-
prints database. Such a process can be modeled as a mapping
from the sample space to the physical space:

M : Ωn → L, r′ = M(X(r, t)), (3)

where r′ is the estimated location of the user. This process is
illustrated in Fig. 1. The user’s actual location is at r and the
estimated location is at r′, which incurs the localization error
denoted by δ⃗.

Due to estimation errors, the result of the localization is that
the user’s location is estimated to be in the δ neighborhood of
r, which is denoted by Q. To reduce the error of localization
is equivalent to mitigating the norm of δ⃗. Since the basis of
the estimation is the reported fingerprint by the user, the ideal
case is that the user’s submitted fingerprints happen to make
the system believe that the location of the user is in Q. We
use E to denote such a region in the sample space, so that
the user’s location can be estimated to be in Q as long as the
reported RSSes fall in E.

The probability that the reported RSS fingerprints can
fall into the region of E depends on the model of radio
signal propagation, which in fact fundamentally determines
the performance of the RSS fingerprinting based approach.
The model proposed in [13] considers the observed RSS at
one location as a random variable, where temporal correlation
of the signal is not taken into account. According to the
site survey practice, it is more practical to model the signal
as a random process as in this paper, where the temporal
correlation can be leveraged. Our investigation in the rest of
the paper is to show that such a seemingly slight change in the
radio signal propagation modeling brings about not only much
higher difficulties in mathematical analysis, but also interesting
findings of the RSS fingerprinting based approach, which have
never been revealed.

IV. ANALYSIS OF 2-D TEMPORAL CORRELATION FOR 1-D
LOCALIZATION

This section examines a concrete scenario of localization,
where both the physical space and the sample space are one



x1

x2

fr (x1,x2)

 

 

y1

y2

u1

u2

Fig. 2. Joint Gaussian PDF of RSS(t) and RSS(t+ τ) at position r

dimensional and the temporal dimension of sampling is two.
The purpose of the examination is to find how likely the user
can be localized in Q with given δ. It is easier to reveal
essence of the fingerprinting approach by analyzing a simple
case, where the results could be inspiring for analyzing more
complicated scenarios.

A. Finding Region E

Let us first find out what kind of RSSes can be observed
at the location r. The one-dimensional physical space can
be regarded as an one-dimensional horizontal axis, where the
origin of the axis is the location of the AP, and the location of
each point can be identified by a scalar r. Based on our pro-
posed radio signal propagation model, the probability density
function (PDF) of RSS readings can be observed follows the
Multivariate Guassian Distribution, which is denoted by

fr(x1, x2) =
1

2πσ2
√
1− ρ2

e−
1
2∆

2

, (4)

where x1, x2 are variables representing the RSSes at time
points t1 and t2 separated by a duration of τ . Figure 2
illustrates fr(x1, x2). Since the random process representing
the signal is stationary, the following analysis is oblivious to
the specific value of t1 and t1 as long as they are separated
by τ . Symbols µ and σ are the mean and standard variance
of the RSS joint distribution at position r, respectively; ρ is
the autocorrelation coefficient of fr(x1, x2). The Mahalanobis
distance is denoted as ∆, where

∆2 =
1

σ2(1− ρ2)
[(x1−µ)2+(x2−µ)2−2ρ(x1−µ)(x2−µ)].

(5)
Since x1 and x2 are both observed at r, the corresponding

marginal distributions with respect to x1 and x2 are the same,
according to our signal propagation model, and the corre-
sponding means and standard variances of the two marginal
distributions are the same as well. This also complies with
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Fig. 3. Joint Gaussian PDFs at Different Locations.

the conclusion in [13]. Consequently, the covariance matrix
of fr(x1, x2) is real, positive and symmetric, where

Σ = σ2

[
1 ρ
ρ 1

]
. (6)

With the same reason, the major axis of the elliptical surface
representing fr(x1, x2) should be the angular bisector of the
Cartesian coordinates with slope 1.

In order to facilitate our analysis, we put the image of
fr(x1, x2) in a new coordinates system with axes y1 and y2.
We let the major axis of the elliptical surface align to y1 and
the origin of the new coordinates system be (µ(r), µ(r)) in
the old system. Then the PDF in the new system is

fr(y1, y2) =
1

2πσ2
√
λ1λ2

e−
1

2σ2 (
y2
1

λ1
+

y2
2

λ2
), (7)

where

λ1 =

√
2(1 + ρ)

2
, λ2 =

√
2(1− ρ)

2
. (8)

We now start to find the region E in this scenario. Refer to
Fig. 3, the value of fr(y1, y2) in fact means how likely the user
can observe [y1, y2] at location r. If the reported RSSes [y1, y2]
indicate that the user’s location is in a small neighborhood of
r, then fr(y1, y2) should be higher than fr±δ(y1, y2), where
r±δ are boundaries of r’s neighborhood in the physical space.
That is, if the user is localized in the neighborhood of r, the
corresponding submitted fingerprints should have fallen into
the region

E = {x|fr(y|µ(r),Σ(r)) ≥ fr±δ(y|µ(r±δ),Σ(r±δ))}. (9)

The profile of E is sketched in Fig. 3, which is the
space between the two regions in dark color. The two dark-
colored regions themselves represent boundaries of intersected
neighboring dome-like bodies. Observe marginal PDFs with
respect to x2 for the three locations r−δ, r and r+δ, which are
presented by three Gaussian PDF curves on the x2−f(x1, x2)
plane with means µ(r − δ), µ(r) and µ(r + δ), respectively.
It is worth mentioning that shapes of the three curves are
the same, which is determined by the variance of Gaussian



Fig. 4. Graphical illustration of region E

noise. This is because Gaussian noise at different locations
in a small neighborhood of the physical space are presenting
indistinguishable randomness, which have been acknowledged
by extensive studies [13], [14]. Due to symmetry of the dome-
like bodies, the same thing happens to the marginal PDFs with
respect to x1.

If the temporal correlation of the RSS is not considered, fin-
gerprints can be observed at different time points with respect
to the same AP are independent at each location; therefore,
the randomness of the RSS can only be characterized in a 2-
D curve of the marginal PDF as shown in Fig. 3. Using such
randomness to evaluate the performance limit of fingerprinting
localization is the basic idea in [13].

Our work in this paper characterizes randomness of the
RSS with the dome-like bodies as shown in Fig. 3, where the
temporal correlation of the signal is taken into account. We can
see that our model presents a more accurate description of the
randomness of the RSS, where a straightforward observation is
the increase of a dimension. Such a model of the RSS provides
more distinguishable characteristics of a location compared
with that in [13], thus provides criteria of finer-granularity for
localization. This is the fundamental reason why the accuracy
performance bound of localization derived in [13] can be
further improved if the RSS temporal correlation is taken into
account.

B. Analysis on Region E
Since the location estimation is performed based on finger-

prints reported by the user, studying properties of E can help
reveal how the system estimates the user’s location. Intuitively,
if we project the image in Fig. 3 onto the y1 − y2 coordinates
system, the resulted image should be that as shown in Fig.
4. The region in yellow should be the projection of the space
E, and the two curves in yellow should be boundaries of the
region. Consequently, if a user’s reported fingerprints fall into
the area left to E, the user is more likely at the location
r − δ; if the reported fingerprints fall into the area right to
E, the user is more likely at the location r + δ. We are to
reveal that the boundaries of E are in the shape of hyperbolic
curve with interesting properties, and then reveal challenges

for accurately describing the region E with corresponding
analysis provisioned.

1) Boundaries of Region E: Substituting Eq. (7) into
Eq. (9), we obtain the following inequality:

1

2πσ2
√
λ1λ2

e
− 1

2σ2 (
y2
1

λ1
+

y2
2

λ2
) ≥ 1

2πσ2

√
λ±
1 λ

±
2

e
− 1

2σ2 (
(y1±

√
2δ▽µ)2

λ
±
1

+
y2
2

λ
±
2

)

,

(10)
where λ1, λ2 are scaling factors of ellipse axes for Gaussian

PDF at position r, and λ±
1 , λ

±
2 are scaling factors at adjacent

positions r ± δ. Specifically,

λ1 =

√
2(1 + ρ)

2
, λ2 =

√
2(1− ρ)

2
;

λ±
1 =

√
2(1 + ρ±)

2
, λ±

2 =

√
2(1− ρ±)

2
.

(11)

Symbols ρ, ρ± are the autocorrelation coefficients for the
Gaussian distribution at r and r ± δ, respectively. After
simplification, they are equivalent to:

(
y21
λ1

+
y22
λ2

)− (
(y1 +

√
2δ ▽ µ)2

λ+
1

+
y22
λ+
2

) ≤ ln
λ1λ2

λ+
1 λ

+
2

;

(
y21
λ1

+
y22
λ2

)− (
(y1 −

√
2δ ▽ µ)2

λ−
1

+
y22
λ−
2

) ≤ ln
λ1λ2

λ−
1 λ

−
2

,

(12)
which is the specific expression of E in the sample space. The
boundaries of E can be obtained when the equality holds.

In order to better understand properties of the boundaries,
we transform the expressions in inequalities (12) into a general
form

Ay21 +By1y2 + Cy22 +Dy1 + Ey2 + F = 0, (13)

where the discriminant ∆ equals to

∆ = B2 − 4AC, (14)

and A = 1
λ1

− 1
λ±
1

, C = 1
λ2

− 1
λ±
2

. Since B = 0, AC < 0,
then ∆ > 0. This means that the two boundaries of E are in
the shape of the hyperbolic curve, where the two foci are on
axis y1.

Note that if A = C and B = 0, both of the boundaries are
straight lines in parallel. A = C and B = 0 also mean that
λ1 = λ2, λ±

1 = λ±
2 , which is to say that measurements with

respect to the same AP at different time points are totally in-
dependent. This is a degenerated scenario without considering
temporal correlation as shown in [13]. The resulted straight-
line boundaries are the same as corresponding boundaries of E
in [13]. This is actually corroborating our current result about
the shape of boundaries.

2) Accurate Description of E: Although we have a basic
idea about boundaries of E, it is still non-trivial to theoretically
prove that the region E is the same as the intuition as shown
in Fig. 4. Imagine the detailed scenario that two surfaces
representing two joint Gaussian PDFs are intersecting with
each other. There are actually two curves of intersection, as
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the two curves l1 and l2 illustrated in Fig. 5. This can be math-
ematically proved through simple derivation by constructing
an equation between the two joint Gaussian PDFs.

It is slightly tricky to understand Fig. 3 and Fig. 5.
Projections of those domes on planes x1-f(x1, x2) and x2-
f(x1, x2) are the same in profile, because this is actually
ignoring the temporal correlation of the RSS. Mathematically,
the covariance matrix of fr(x1, x2) becomes variance σ2

as the autocorrelation coefficient ρ = 0. However, those
joint Gaussian PDFs factually have different autocorrelation
coefficients denoted by ρ and ρ±, as shown in Fig. 3; therefore,
if we project those domes on the plane y1-f(x1, x2), the
resulted image is just that illustrated in Fig. 5.

In the perspective of engineering, the system considers
that observing fingerprints around the l1 is with very low
probability if the user is at r, thus it is more meaningful to
consider the boundary represented by l2, in order to ensure an
expected localization reliability as high as possible. It is worth
mentioning that fingerprints such as those around l1 indeed can
be observed in practice. In this case, the system will estimate
the location of the user is at r′, where fr′(y1, y2) has a higher
value, although the user is factually at r. Such errors can not
be avoided in the fingerprinting based approach, since small
probability events do happen.

We can see that the opening orientation of the boundaries
illustrated in Fig. 3 is to the left. Refer to equalities (11),
(12) and Fig. 3, if ρ− < ρ < ρ+, the physical meaning
of the inequalities (12) is that: all points with the distance
differences between r − δ to r and r to r + δ are less than a
constant. The opening orientation is to the left, according to
the definition of the hyperbola. If ρ− > ρ > ρ+, the physical
meaning of the inequalities (12) is that: all points with the
distance differences between r to r − δ and r + δ to r are
less than a constant. The opening orientation is to the right.
For convenience of presentation, we here abuse the coordinate
in the physical space and use the coordinate to represent the
corresponding RSS values in the y1 axis.

This means that the opening orientation of boundaries are
actually determined by the degree of temporal correlation
of the RSS at different locations. Moreover, no matter the
relationship among ρ and ρ±, the inequalities of (12) show
that the area of E is in the middle of the two boundaries. As
a matter of fact, if we specifically consider the real situation
under study, it should be the case ρ− < ρ < ρ+. Recall
our 1-D physical model, where the AP is located at the

origin of an 1-D coordinate axis and r − δ, r and r + δ are
distance to the AP. The farther the location is from the AP, the
stronger the temporal correlation of the observed RSS will be;
consequently, the orientations of the two boundaries should be
to the left as shown in Fig. 4.

C. Influence of Temporal Correlation on Accuracy of Local-
ization

We can further verify our theory by examining the ex-
pected localization result given special fingerprints. The
point (−

√
2δ∇µ, 0) in Fig. 4 is special, which makes

fr−δ(−
√
2δ∇µ, 0) to achieve the maximum value. This means

that if a user reports fingerprints (−
√
2δ∇µ, 0), the system

definitely should estimate the user’s location to be at r − δ.
Substituting (−

√
2δ∇µ, 0) into the first inequality of (12),

A natural consequence is supposed to be that the point
(−

√
2δ∇µ, 0) is definitely to the left of the left boundary

of E. However, we are surprised to find that it is possible for
the point (−

√
2δ∇µ, 0) to be within the region E. That is, the

point (−
√
2δ∇µ, 0) is to the right of the left boundary of E.

This can happen if we set δ to be very small and the difference
between ρ− and ρ to be very large. The grey curve shown in
Fig. 4 is the resulted boundary if we choose special values of
δ and ρ. This event can lead to errors of location estimation,
because a user definitely should be localized at r−δ is in fact
localized at r.

The root cause of the phenomenon is that the choice of δ
and ρ in a theoretical perspective may not comply with the
real situation. In the real world, the temporal correlation in a
small neighborhood with respect to the same AP should be
varying smoothly. Consequently, if δ is small, the difference
between ρ− and ρ is supposed to be insignificant.

We now compare localization results yielded by considering
and ignoring the temporal correlation of the RSS. Recall the
study in [13] ignores the temporal correlation of the RSS. The
region E in this case is the region between the two dashed
lines as shown in Fig. 4. Consider shadowed areas B covered
with solid lines. If the user’s reported fingerprints fall into
such areas, it means that the user supposed to be localized
at r is mistakenly localized at r − δ, or the user supposed to
be localized at r + δ is mistakenly localized at r. Similarly,
consider the grey areas A. If the user’s reported fingerprints fall
into such areas, it means that the user supposed to be localized
at r − δ is mistakenly localized at r, or the user supposed
to be localized at r is mistakenly localized at r + δ. That
is, considering temporal correlation can improve the accuracy
of location estimation by providing more accurate criteria for
making judgement.

Theoretically, the reliability of the localization is the proba-
bility that the user’s reported fingerprints fall within the region
E, so that the user is localized at δ neighborhood of r. Denote
the area between the two dashed lines as T . The reliability of
the case where temporal correlation is now considered is

R(δ, r, σ) =

∫
T

f(Y)d(Y) =

∫ 1
2 δ▽µ

− 1
2 δ▽µ

f(Y)d(Y), (15)



where f(Y) is the joint Gaussian PDF with respect to fin-
gerprints Y. Consequently, the reliability improvement by the
temporal correlation is

∆R(δ, r, σ, ρ) =

∫
T ′−T

f(Y)d(Y), (16)

where we use T ′ to denote the area between the two hyper-
bolas.

V. HIGH-DIMENSIONAL TEMPORAL CORRELATION FOR
LOCALIZATION

A. High-Dimensional Temporal Correlation

We now extend our analysis to high-dimensional temporal
correlation for localization. In this case, the corresponding
multivariate Gaussian distribution is with high dimension and
covariance matrix Σ is with high rank. Suppose that we
consider the temporal correlation of m dimension, then
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where the Mahalanobis distance ∆ is now as:

∆2 = (x− µ)TΣ−1(x− µ). (18)

Similar to the analysis procedure for the 2-dimensional tempo-
ral correlation, we can always find orthogonal eigenvectors ui

using Gram Schmidt Orthogonallization (GSO) method such
that
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Let y = U(x − µ), where U = [u1,u2, . . . ,um]T and
UUT = I. Then the coordinate x can be shifted and rotated
to y with Jocobian Matrix J and J = UT . The multivariate
Gaussian distribution in y coordinate is expressed as:
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The probability of r′ ∈ Q or observation x ∈ E are the same
as equation (9). After simplification, it is equal to
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We define vectors h1,h2,h3 as
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The inequality sets (21) can be put as
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It can be seen that the boundaries of E in this case is a
high-dimensional hyperbola.

B. High-Dimensional Sample Space

Based on Maximum Likelihood Estimation (MLE), suppose
the measurements for different n APs are independent and
considering the temporal correlation of m dimension. Then
the region E should be:

n∏
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Denote yi,j as the measurement of ith AP at the mth time
points. Similar meaning to λi,j . Applying the Eq. (20), we
have
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We here construct new vectors z1, z2, z3 with transformation

matrix as following:
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and build up transformation matrix T2 as
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Then the second vector z2 can be expressed as
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Similarly, define z3 to be the position (r − δ⃗) as z2 to
be the position (r + δ⃗). Applying the vectors z1, z2, z3 to
inequality (25), we can get
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These inequations indicate that the difference of distance
to two different points is a constant. By the definition of
hyperbola, the boundaries of E are in the shape of high-
dimensional hyperbola with shearing in different dimensions.

C. Two-Dimensional Physical Space

We define a location in this case as a two-dimensional
vector r⃗ as shown in Fig. 1, and the joint Gaussian PDF after
correlation rotation is still the multivariate Gaussian function
as in Eq. (20). Then the probability of r⃗′ ∈ Q or x ∈ E is
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where δ⃗ is the difference of the user’s real location r⃗ and
estimated location r⃗′, i.e., δ⃗ = r⃗− r⃗′. We use θ to denote the
angle between r⃗ and r⃗′ ranging from 0 to 2π, as shown in
Fig. 1.

Substituting the Eq. (20) into Eq. (30), we rewrite the
detailed expression of E as:
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As the temporal correlation of the RSS is relatively stable in
a small neighborhood, we can use ▽ρ(r⃗) to denote its gradient
at position r⃗. Refer to Fig. 1, a circle in the 2-D physical space
is formed by rotating δ⃗ from 0 to 2π. Consequently, the region
E is formed with hyperbolas in different dimensions, which
is as the body shown in the 3-D sample space in Fig. 6. The
shape of the intersection between E and the corresponding
orthogonal plane is irregular as shown in Fig. 6, this is because
the temporal correlation in different locations can be different,
which makes the curvature of the hyperbolas different from
each other.

VI. EXPERIMENTAL RESULTS

In this section, we demonstrate experimental results to show
the performance difference between the system utilizing and
the system ignoring temporal correlation of the RSS. The
experiments are conducted in a hallway to verify our analysis
for the 1-D physical space. We use two mobile devices to
measure the RSSes from one AP at two different locations
that is 2 meters from each other. In order to differentiate
temporal correlations of the two locations, we add noise of
people motion to one of the channels from the AP to mobile
devices. We measure the RSS value every 100 millisecond for
1k times at each location. Traditional localization estimation
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Fig. 6. Region E in 2-D physical space localization.

processes extract the RSS information independently and build
the corresponding PDF in the database, such as the measured
RSS distribution shown in Fig. 7, where each curve represents
the PDF of each location. The two figures represent two cases,
where the first case means that the temporal correlation at each
location is distinctive, and the second case means that the two
locations’ temporal correlations are similar to each other. The
regression parameters for the Gaussian PDFs are as shown in
Table I.

TABLE I
FITTING 1-D GAUSSIAN PARAMETERS

Gaussian Pic1 r1 Pic1 r2 Pic2 r1 Pic2 r2
amplitude 152.119 391.278 205.92 135.665

mean -71.574 -59.61 -70.3584 -72.8452
sigma 3.5943 1.409 2.54672 4.10548

Fig. 7. PDFs of the RSSes

Based on the fingerprints observed above, we now construct
the corresponding 2-D temporal correlation PDFs, which are
illustrated in Fig. 8(a) and Fig. 8(b). The corresponding
regression parameters for the joint 2-D Gaussian PDFs are
shown in Table II.

TABLE II
FITTING 1-D GAUSSIAN PARAMETERS.

Gaussian Pic1 r1 Pic1 r2 Pic2 r1 Pic2 r2
A 126.274 254.858 184.975 124.457
µ -71.5829 -59.5945 -70.3273 -72.8478
σ 2.5122 0.9905 1.7931 2.8962
ρ 0.9877 0.9215 0.977799 0.99263

The experimental results are shown in Fig. 8(c) and Fig. 8
(d), where the blue and yellow dots are fingerprints reported



(a) Gaussian Distribution of Exp1 (b) Gaussian Distribution of Exp2 (c) Exp1 Hyperbola Bound-
ary

(d) Exp2 Hyperbola Bound-
ary

Fig. 8. 2-d Gaussian Distribution and Hyperbolic Criteria for Localization

at the first and the second locations, respectively. The curve
and straight-line boundaries to separate dots are generated by
the system considering and ignoring the temporal correlation,
respectively. In both cases shown in Fig. 8(c) and Fig. 8 (d), the
curve boundary helps the system make more accurate location
estimation. Due to the way of presentation, the seemingly one
point on the figures actually represents many fingerprints. The
results show that the number of fingerprints whose associated
locations have been correctly estimated is much higher with
the temporal boundary. We can expect that the performance of
the system will be better if more fingerprints are sampled. In
order to deal with the small probability event, we put both of
arms of the hyperbola in the figure. An interesting finding is
that there is a blue dot in the upper right of Fig. 8(c), which
can be correctly localized with the temporal boundary.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have theoretically shown that the tem-
poral correlation of the RSS can improve accuracy of RSS
fingerprinting based indoor localization. In particular, we
have constructed a theoretical framework to evaluate how the
temporal correlation of the RSS can influence the reliability
of location estimation, which is based on a newly proposed
radio propagation model considering the time-varying prop-
erty of signals from a given Wi-Fi AP. Such a theoretical
framework was then applied to analyze localization in the one-
dimensional physical space, which reveals the fundamental
reason why performance improvement of localization can be
brought by temporal correlation of the RSS. We have extended
our analysis to high-dimensional scenarios and reveal key
information for calculating localization reliability. Experiment
results corroborate our theoretical analysis. Our future work
is to further study the high-dimensional cases.
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