Supplementary Material to
Hashing Linearity Enables Relative Path Control in Data Centers [5]

Zhehui Zhang', Haiyang Zheng?, Jiayao Hu?, Xiangning Yu?, Chenchen Qi?, Xuemei Shi?, Guohui Wang?

YUniversity of California, Los Angeles, *Alibaba Group

A Proof of XOR/CRC hashing linearity

We first prove XOR hashing satisfies the hashing linearity.
We define src_ip(h) as the function to extract source IP ad-
dress field from the header, so as dest_ip(h), src_port(h),
dest_port(h). XOR hash function with tuple of IP ad-
dresses and port numbers as input is Hash(h) = src_ip(h) &
dest_ip(h) @ src_port(h) @ dest_port(h). Without loss of
generality, assume h; and h; are arbitrary packet headers
that all fields are the same except destination port num-
ber. For function dest_port(), we have dest_port(h; ® hj) =
dest_port(h;) @ dest_port(h;). Thus we have Hash(h; ®
hj) = Hash(h;) ® Hash(h;), which satisfies

Hash(h;) ® Hash(h;) = Hash(h; ® h;) ® Hash(0) (1)

since Hash(0) = 0. The analysis of dest_port also applies to
other functions to extract header fields.

CRC hashing is calculated based on division of input
by a polynomial. There are several standardized polynomi-
als mostly adopted by the communication system. For ex-
ample, CRC-CCITT, a 16-bit CRC hash function, is used
as the hash algorithm in commercial switches [2]. The
polynomial is one bit longer than the output, i.e. 17 bits
for CRC16 while 33 bits for CRC32. With polynomial
p, the CRC hashing result is calculated by a polynomial
long division Hash(h;) = division(init & h;, p), where init
is the initial value selected by CRC. Same as the previous
proof, we check Hash(h; & hj) = division(init © h; ® hj, p).
We have division(init ® h; ® hj, p) = division(init & h;, p) ®
division(init ® hj, p) @ division(init, p) since division by a
polynomial is linear [4]. Then we have Hash(h; ® hj) =
Hash(h;) ® Hash(h;) ® Hash(0), where Hash(0) is the hash
result for an empty packet header with all 0’s.

B Proof of ECMP linearity

In Pre_proc(), bitwise operations like AND, OR, XOR and
shift are commonly applied. Suppose we have AND op-
eration with a constant cst for pre-processing, we define

Hash'(h) = Hash(h&cst), where cst is a pre-installed con-
stant and Hash() is linear. Since

Hash'(h;) ® Hash'(hj) = Hash(h;&cst) & Hash(h j&cst)
= Hash((h; ® hj)&cst) & Hash(0&cst)
= Hash'(h; & h;) & Hash'(0)

, Equation 1 still holds for Hash'(). For the same pro-
cedure, OR also holds. For bit shifting shifz(h,k), where
k is the index of shifted position, we have shift((h; &
h;j),k) = shift(h;,k) @ shift(h;,k). Equation 1 still holds for
Hash(shift(h,k)). By the same methodology, Equation 1 also
holds for masking function, which sets certain fields as zero
in the result. With masking operation, hash function with
pre-processing is Hash(mask(h,s,e)), where s and e are the
starting index and the ending index of the mask.

Hashing seed is used to initialize CRC registers to vary hash
results of switches at different tier to avoid traffic polarization
in Pre_proc() [1]. Hash seed does not affect linearity since
the XOR operation is proved to be linear. Suppose we have
hash seed for switch as Hash” (h) = Hash(h® seed), where
Hash() is linear, we have

Hash" (h;) & Hash" (h;) = Hash(h; & seed) & Hash(h; & seed)
= Hash(h; ® h; @ seed) ® Hash(seed)
= Hash" (h; ® h;) & Hash" (0)
, which proves Equation 1 still holds for Hash" ().
Post-processing might use XOR-folding of 32-bit hash-
ing results to get a 16-bit result [3]. Denote the folding as
fold(r[1: 32]) = r[1: 16] @ r[17: 32], where [i: j] denotes
the segment from ith bit to jth bit. Following similar logic,

we can prove Post_proc(Hash(h)) = fold(mask(Hash(h)))
also satisfies Equation 1.

C Discussion on hashing seeds

As we presented in the paper, the linearity guarantees

ECMP(hj®A) = ECMP(h;) ® ECMP(A) & ECMP(0) (2)



, where ECMP(A) is decided by the hashing algorithm and
ECMP(0) is decided by the hashing seed (initial hashing
value with an empty packet header).

Based on Equation 2, we derive that multi-hop linearity
requires the selection of s; will not affect ECMP;, (A) and
ECMP;,(0), i.e. all switches to be select at hop 1 need to be
configured with the same hashing algorithm and hashing seed.
In fact, we can alter Equation 2 to relax the requirements on
hashing seeds. We can derive that

ECMP(h;®A; ®Ay) = ECMP(h;) ® ECMP(A;) ® ECMP(A,)
(3)

For two hops s - 53, concatenation of s; = ECMPy40,(h)
and s, = ECMP;, (h) still satisfies

ECMPronger(h® Ay @ Ag) - ECMPy, (h® Ay @ Ay)
—(ECMPyunger(h) - ECMP,, ()

& (ECMPyunger(A1) - ECMP, (A1)

&) (ECMPsende,(Az) -ECMP;, (Az))

“

under the assumption that the selection of s; will not af-
fect ECMP;, (A). One might wonder how we can design the
pathmap based on Equation 3. We can keep the same pathmap
as presented in the paper. To decide a path offset, we get a
mapping from all possible path offsets O(A;) + O(Az) to
Al DAy

References

[1] P. Koopman and T. Chakravarty. Cyclic redundancy code
(crc) polynomial selection for embedded networks. In
International Conference on Dependable Systems and
Networks, 2004, pages 145-154, 2004.

[2] Brad Matthews and Puneet Agarwal. Flow based path
selection randomization, 2013. US Patent US8503456.

[3] Jarno Rajahalme. Performing a finishing operation to
improve the quality of a resulting hash, 2014. US Patent
US10193806B2.

[4] Mathys Walma. Pipelined cyclic redundancy check (crc)
calculation. In 2007 16th International Conference on

Computer Communications and Networks, pages 365—
370. IEEE, 2007.

[5

—_

Zhehui Zhang, Haiyang Zheng, Jiayao Hu, Xiangning Yu,
Chenchen Qi, Xuemei Shi, and Guohui Wang. Hashing
linearity enables relative path control in data centers. In
2021 USENIX Annual Technical Conference (USENIX
ATC 21). USENIX Association, July 2021.



