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Abstract—This paper investigates how to optimize the fingerprints reporting strategy to improve localization accuracy, and how the
optimal strategy theory can be utilized to streamline the design of WLAN fingerprinting localization systems. In particular, we first reveal
that the fingerprints reporting problem is essentially an NP-Hard size-constrained supermodular maximization problem, and then show
the inapplicability of the state-of-the-art approximation algorithms to the problem. We then propose a new algorithm and show that if the
number of fingerprints measurements is large enough, then the localization accuracy is at most 1 — ¢ times worse than the optimal
value, with € any given constant close to 0. Moreover, we demonstrate how the optimal strategy theory can be utilized to improve
accuracy of location estimation by resolving the issue of similar fingerprints for both faraway and close-by locations, with an iterative
algorithm developed to cross check fingerprints sampled in different locations, in order to derive the best possible result of localization.
Further, we reveal the relationship between accuracy of location estimation and coverage of Wi-Fi signals in indoor spaces when
planning deployment of APs. Experiment results are presented to validate our theoretical analysis.

Index Terms—Fingerpringting, localization, performance analysis

1 INTRODUCTION

I-FI received signal strength (RSS) fingerprinting

based approach has been very popular for indoor
localization [1], [2], [3]. The basic idea of the approach is to
first perform site survey for the indoor space that needs
localization service, where the RSS reading observed with
respect to each access point (AP) at each landmark is
uploaded to a localization server. By aggregating uploaded
RSS fingerprints, the server can build up a database associ-
ating fingerprints with corresponding landmarks, which is
termed as the training or offline phase. The database can be
utilized when a user wants to be localized: the user could
report the observed RSS readings to the server, which
searches the database and derives the estimation of the
user’s current location. This process is usually termed as
location estimation or online phase.

Many indoor localization systems have been developed
with the fingerprinting approach. Early systems such as
Radar are based on the nearest neighbor(s) in signal space
(NNSS) technique, which is to compute the euclidean dis-
tance between reported RSSes and the RSSes in the database
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[4]. Later systems such as Horus utilizes probabilistic techni-
ques to estimate the user’s location, where information about
the signal strength distributions is derived from the database
[5]. The recent trend for designing the indoor localization
system is to leverage crowdsourcing for data training and
collaborative location estimation [1], [6], [7], [8], [9], where
data from sensors embedded in smartphones are utilized [6],
[9]. Empirical studies are presented to evaluate performance
of existing localization systems, where extensive experimen-
tal results are analyzed to obtain an empirical quantification
of accuracy limits of RSS localization [3].

While efforts have been devoted to improving accuracy
of indoor localization systems in an ad-hoc manner, recent
theoretical study reveals fundamental limits of RSS finger-
printing based approach oblivious of specific implementa-
tion details [2]. An interesting theoretical result of the study
is that: reporting RSSes with respect to different APs in the
online phase results in different levels of accuracy in loca-
tion estimation. In contrast to the AP selection schemes for
scalability and energy efficiency with clustering [18], [19],
[20], [21], the new finding provides a theoretical basis for
streamlining the design of fingerprinting based localization
systems. However, how to find the optimal reporting strat-
egy with reasonable computational cost, and how to exploit
the theory to streamline the design of the localization sys-
tem are still not concretely known.

In this paper, we reveal the implication behind the best
strategy for fingerprints reporting, based on which we
streamline design methodologies of important components
in localization systems. We first reveal that the objective
function of the optimal fingerprints reporting strategy is
supermodular, and the fingerprints reporting problem is
essentially an NP-Hard size-constrained supermodular
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maximization problem. We then present analysis of the
state-of-the-art approximation algorithms [26], [27] and
show their inapplicability to the fingerprints reporting strat-
egy optimization case. We propose a new algorithm and
show that if the number of fingerprints measurements is
large enough, then the localization accuracy is at most 1 — ¢
times worse than the optimal value, where ¢ is a given con-
stant close to 0.

We then demonstrate how the best strategy theory can be
utilized to improve accuracy of location estimation by
resolving the fingerprints similarity issue, which means that
fingerprints observed in faraway locations can be similar to
each other due to the randomness of radio propagation.
An iterative algorithm is developed to cross check finger-
prints sampled in different locations, which is based on
extra information provided by the best strategy theory.
We further illustrate that the proposed algorithm can bene-
fit the localization accuracy, even if locations with similar
fingerprints are near to each other and the associated best
strategies are the same.

Moreover, we analyze how to optimally deploy APs,
which improves the performance of localization systems.
We reveal the relationship between accuracy of location
estimation and coverage of Wi-Fi signals in a given region,
when planning deployment of APs. We show that the
requirement of guaranteed localization accuracy is higher
than that of guaranteed signal coverage. We further discuss
the landmark collocation issue with AP deployment taken
into account, and point out that it can be difficult to discrim-
inate one landmark from another in the RSS sample space,
if landmarks are deployed based on the current pure geo-
metric model.

2 RELATED WORK

Wi-Fi Based Indoor Localization. A number of wireless techni-
ques can be used for indoor localization such as acoustic
signals, ultrasound, infrared, RFID, Bluetooth, Cellular and
Wi-Fi, where a comprehensive survey can be found in [30].
The basis of such localization techniques is to measure the
spatial feature of the corresponding wireless signals. Wi-Fi
based indoor localization has drawn much attention in
recent years due to the wide deployment of Wi-Fi APs and
ubiquitous use of smartphones. The easy-access received
signal strength (RSS) can be used for localization. With
the RSS measurement, the radio propagation model can be
applied to derive the distance between APs and the mobile
device, and the device’s location can be triangulated. This is
known as model based approach. Another method is to
collect RSSes observed in different locations to build a RSS
fingerprints database, which is then compared with the
user reported RSSes to estimate the user’s location. This is
known as fingerprinting based approach.

The time and angle extracted from the channel state
information (CSI) of the wireless signal also can be used for
localization. Chronos utilizes a novel algorithm to compute
the time-of-flight (ToF) of the signal to derive the distance
between the transmitter and receiver [31]. Kotaru et al. pro-
pose SpotFi system, which is based on ToF and angle-of-
arrival (AoA) collected from each AP [32]. Xiong et al.
develop an indoor location system ArrayTrack, where the

TABLE 1
Performance of Fingerprinting-Based Positioning System

Systems Error Description

Radar [4] 2-3m Nearest neighbour(s) in signal
space (NNSS).

Horus [5] 1.5-2.1m Probabilistic approach.

Peer-assisted 1.6-3m With acoustic ranging.

Localization [10]

Zee [8] 1.2-2.3m Particle filter and crowd-
sourcing.

EZ[11] 2-7m Models wireless propagation
constraints.

Graph-Fusion [12]  1.52-4.53m Particle filter and graph
discretization of indoor map.

Moloc [16] 1.13-4.91m Maximum likelihood of
fingerprint and motion.

Walkie-Markie [13] 1.3-2.8m RSSI sequence.

Unloc [14] median 1.69m WiFi landmark.

PTS[15] 0.4-3.8m RSSI peak in a temporal
sequence.

basic idea is to derive the AoA information of the mobile
device’s signal with respect to multiple antennas. Such sys-
tems can achieve centimeter-level accuracy; however, there
are only limited types of hardware on the market support-
ing CSI retrieval [33], [34], and those customized hardware
are not widely deployed in existing buildings as regular
Wi-Fi APs. We focus on fingerprinting based localization
in this paper, where the advantage is the convenient
deployment.

Wi-Fi Fingerprinting Localization. The early fingerprinting
localization systems employ pure RSS fingerprints to deter-
mine the mobile device’s location [4], [5], and the later systems
utilize data from device’s embedded sensors for both improv-
ing the localization accuracy [8], [10], [11], [12] and deriving
radio map of the space covered [13], [14], [15], [16]. Some rep-
resentative mechanisms are tabulated in Table 1; comprehen-
sive summary of the fingerprinting localization systems can
be found in a number of survey papers such as [17].

Fingerprints Reporting Strategies. In those fingerprinting
localization systems, the fingerprints reporting strategy
determines which AP’s generated RSS values the mobile
device should report to the localization server in the online
phase. Since an indoor region could be covered by many
APs, it is found that processing all the RSS data that can be
observed will incur high computational complexity for the
energy-constrained mobile device [18], [19]. Moreover, the
number of APs providing continuous and stable RSS finger-
prints for a given location is limited, there is a need to
choose a subset of observable APs at a location, so that the
computational complexity and bias incurred by the unstable
APs can be reduced.

Clustering approach has been adopted by early large-
scale localization systems to improve the scalability and
accuracy, where locations in an indoor space are grouped
into clusters according to the coverage of APs [18]. In partic-
ular, all locations that share ¢ APs are put into one cluster,
which makes sure that all locations are covered by at least ¢
APs, and ¢ APs with the largest signal strength values at
each location are chosen for localization. As the order of
APs with largest RSS values slightly changes with time, the
q APs are treated as a non-ordered set.
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Chen et al. propose an information gain based AP selec-
tion method, where the basic idea is to select those APs
with most discriminative features for localization [19]. Each
AP is viewed as a feature and the radio map of the space is
described by features of APs, where the AP,’s feature value
is the average signal strength. The discriminative power of
feature AP; is measured by the information gain when the
feature value of AP, is known. The information gain is
defined as the difference between the entropy of the radio
map and the conditional entropy given AP;’s feature value.

Kushki et al. propose a spatially localized positioning
method in wireless local area networks [20]. The first step
of the method is to perform spatial filtering over location
fingerprints, where locations with similar observable finger-
prints are grouped into a cluster. The system then selects
APs corresponding to each cluster, where the goal is to
make selected d APs to be with the smallest divergence. The
divergence is measured by two metrics: Bhattacharyya
distance and information potential, both of which measure
the distance between two probability density functions.

Lin et al. propose a group-discrimination based AP selec-
tion scheme, which considers the dependence among APs
[21]. The proposed mechanism proposes an algorithm uti-
lizing the risk function from supporting vector machines
(SVMs) to measure the localization capability of each group.
The group-discrimination value of each group is derived by
maximizing the margin between reference points of the
space. A recursive feature elimination (RFE) mechanism is
then proposed to reduce the computational overhead.

The AP selection approaches mentioned above are basi-
cally targeting at how to group APs into clusters. The recent
study on fingerprints reporting strategies reveals that measur-
ing different APs results in different levels of accuracy even
within the same cluster [2]; however, the particular scheme
for finding the strategy is not elaborated. While our previous
work [36] propose a stimulated annealing algorithm to find
an appropriate measurements sequence, a rigorous theoreti-
cal analysis of the AP selection issue is yet to be presented.

Submodular Optimization. We are to model the problem of
finding the best strategy as a size-constrained submodular
minimization problem. It is known that the unconstrained
submodular minimization problem can be solved in polyno-
mial time; however, if the problem is with additional
constraints, it will become extremely challenging. It is pro-
posed to leverage the basic polyhedral theory to resolve the
NP-Hard submodular minimization problem with cardinal-
ity constraint [26], where the optimal solutions under cer-
tain size constraints can be found in polynomial time. Iyer
et al. propose a framework for both unconstrained and
constrained submodular set function optimization problems
based on discrete semidifferentials [27]; an approximation
algorithm for the size-constrained submodular minimiza-
tion problem is also presented. However, those recently-
proposed algorithms can not be applied directly to the prob-
lem studied in this paper, and we will propose an approxi-
mation algorithm dedicated to this end.

3 SysTEm MODEL

The theoretical basis of best fingerprints reporting strategy
is first presented in [2], where it is shown that reporting

E E £(@)

Physical Space

Sample Space

Fig. 1. Intersection in sample space.

RSSes obtained from different APs results in accuracy of
location estimations in different levels. The location esti-
mation process of RSS fingerprinting based localization is
in fact a mapping from the RSS fingerprints space to the
physical space. If we use () to denote an area in the physi-
cal space, which is centered at the user’s actual location
with radius 8, then there must be a corresponding event
E in the sample space, which makes the localization sys-
tem to estimate the user’s location in ). Thus the proba-
bility the user is correctly localized in @ is equal to the
probability that the event £ happens. The event E is a set
of outcomes of RSS measurements, the shape of which in
the sample space turns out to be a hypercylinder [2]. It
means that if the reported RSS readings fall into the
hypercylinder then the localization system will estimate
the user’s location in the area Q). The hypercylinder inter-
sects with the mean surface of RSSes, and the intersected
surface is in the shape of an ellipse, as the example shown
in Fig. 1.

An interesting finding presented in [2] is: if we use
another hypercylinder £(c) to replace the event E, where
the intersection between £(c¢) and the RSS mean surface is a
circle with radius ¢, then the corresponding area the user
will be localized in the physical space is determined by the

A2

- Zp (is 2(0—-¢;)
as shown in the right part of Fig. 1. In the figure, location of
the user is 7" and the location of any point on the boundary
of the ellipse U is r'. Vector § = ' — 7 denotes a two-dimen-
sional vector with the direction from the user’s actual loca-
tion to any point on the boundary of #. The symbol 6
denotes the angle between § and the horizontal axis, and ¢;
denotes the angle between V,;(7) and the horizontal axis,
where Vyu,;(7) is the gradient of the mean of measured RSS
with respect to AP, at location 7, and p; = (|Vp,(7)|/07)*.
The symbol o; denotes the observed RSS standard deviation
with respect to AP;.

The ellipse U can be transformed into the form
Q10%c08*0 + Q2025100 + Q3 p*cosbsing = 4¢®, where Q) =
Sopicos’p;, Qr = Y. pisin’;, Qs = Y 2p;cosd;sing;, then the

area of the ellipse is u = 87¢?/,/4Q1 Q2 — Q3. Since the event
&(c) determines w in the physical space and £(c) is deter-
mined by reported fingerprints. The smaller u is in value,
the more likely the user can be localized at 7, which leads to
higher accuracy of location estimation. This means that
maximizing the localization accuracy is equivalent to find-
ing the measurement sequence minimizing w.

Specifically, if the set of all APs that can be sensed by the
user’s mobile device is denoted by U = {AP;},i=1,...,m,

function p%(9) , which in fact is the ellipse U/
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a sequence of measurements on APs can be denoted by
Vi=(s1,...,5),8; €U and [ is the number of times for
measurements. The symbol s; is the index of the measure-
ment in the sequence. Note that s; does not necessarily
mean that the measurement is performed on AP, since an
AP can be measured more than once in the sequence. The
whole set of strategies is denoted as U!, where the size of
the set is m/.

For the purpose of simplification, the characteristic of
AP, can be described with a complex parameter Z; = p;e*?i,
where p; represents the distinctiveness of signal strength
influenced by signal gradient and noise, and the corre-
sponding direction is reflected by 2¢;, double of signal
gradient direction. With Z;, minimizing v is equivalent to
maximize
2

5 1

57

i€V,

Fv) = <Zzi>2

i€V

thus the optimal fingerprints reporting strategy can be
denoted by V;, Vi € U!, where

V, = arg max F (V). (2)

VzéUl

While interesting insight into location estimation is
revealed, the proposed best strategy for fingerprints report-
ing in [2] is presented in a concise form without details. Our
work in this paper provides a systematical analysis of the
best strategy and exploits the best strategy to streamline
design of the localization system.

4 ANALYSIS OF OPTIMAL STRATEGY FOR
FINGERPRINTS REPORTING

4.1 Supermodularity of the Objective Function
Consider the localization system with m APs, each of which
can be measured multiple times. Suppose that the mobile
device is allowed to perform AP measurements ! times,
then the objective function of AP selection is equivalent
to the function g(-): 2™ — R, and for any set S C [Im],
we have

2 2
g(S) = <Z|9|—%+1J|> - 'ZSL%HJ , 3)

acs aes
where [Im] denotes the set of positive integers {1,2,...,Im}.

Intuitively, more times of measurements can lead to
more accurate location estimation; moreover, it is straight-
forward that the first term of g(S) is dominant compared
with the second one. Such characteristics indicate that g(.5)
could be a supermodular function. We provide the rigorous
proof in the following.

Theorem 1. Function g(S) = (Syes I sty | )* — [Sacs 8ot |
is a supermodular set function defined on the set [Im)].
Proof. We prove the theorem with the definition of super-

modular set function [26]. We first perform the following
transformation of g(-):

2 2
g(5) = <Z |11 |) -
€S
Zpa(i)emq)“(i)

2
= <Zpa(1)) -
ieS €S
= (Zzﬁ(i) + > Pamprro))

pREE
ics e

2

1€8 i#£jes
2 2i(¢d (i)~ Po( i)
B (Zpo(i) + ) PofiyPoye” P00 )
ieS i£jeS

=2 Z Po(i)Po(j) S (Do (i) — Bo(s))-
iAjes

For the convenience of demonstration, we define a new
function: o(i) = |52 + 1](1 < i < Im); if we add a new
element & to the set S, the value increase of the function
introduced by the element is

9(SU{k}) — g(5)
=2 Zpompau) Sin2(¢n(k‘) = ®o(j))-

jes

As each term above is non-negative, if adding the same
element k into a smaller set, the value of the function must
be smaller compared with that if adding it into a larger set
S, thus function g(-) is a supermodular set function.' O

With the supermodularity of the objective function, the AP
selection problem can be intuitively modeled as a size-con-
strained supermodular maximization problem. In particular,

mgmx{g(S) : S C[N],S =k}, 4)

where g(-) : 2"l — Risa supermodular set function on the set
[N]={1,2,..., N}. This problem has been proved to be NP-
hard [26], [27], [28], and normally the approach for finding the
solution is to transform the size-constrained supermodular
maximization problem into the corresponding submodular
minimization problem [28]. This is because for any super-
modular set function g¢(-), if we define a new function
f(-) =C —g(-), and C'is a constant that is large enough such
as C' = supg(-), then it is easily to verify that the function f(-)
is a submodular set function. With the newly defined function
f(+), maximizing g¢(-) is equivalent to minimizing f(-).

The size-constrained submodular minimization problem
is currently with no standardized approximation algorithm
to the best of our knowledge [26], [27], [28]. We find two
algorithms published recently [26], [27], and examine
whether they could be used for resolving our problem with
guaranteed performance. In the following, we will show
why the two state-of-the-art approximation algorithms are
unable to provide the guaranteed approximation ratio,
which motivates us to develop our algorithm in Section 4.2.

Iyer et al. propose an approximation algorithm for mini-
mizing the submodular set function [27]. Recall the definition
of f(-) mentioned above, the submodularity of f(-) can still

1. A set function f(-) : 2¥ — R defined on set E is a supermodular
set function if for any set BC A C E, f(AU{i}) — f(4) > f(BU{i})—
f(B), where i is an element in set £ but not in set A.
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hold even without the constant C'. The purpose of C'is just to
ensure that the value of f(-) is non-negative, which is required
by [27]. With Iyer’s approximation algorithm, the solution can
be obtained g, and the optimal solution g* satisfies

C g <l+e, (5)
where ¢ is a constant close to 0. Since C' can be a very large
constant, the algorithm is unable to ensure a good approxi-
mation ratio to the optimal solution for the problem.

Nagano et al. propose a size-constrained submodular
minimization algorithm by leveraging the minimum norm
base [26]. We here briefly describe the basic idea of the algo-
rithm, and then show why the algorithm can not be applied
in the AP selection scenario. The submodular set function
can be mapped into a N-dimensional polyhedron, with N
being the number of elements in the set. An example of
polyhedron corresponding to a submodular set function
could be found in our technical report [29].

Theorem 2. For submodular set function f(-) =2g9(E) — g(-),
the minimum norm base b = (by,by...by) is a vector with
the values of all the components being the same.

Proof. According to the definition of minimum norm base,
the components b;,b;...by must satisfy the following
polyhedron constraints

bis 2(;\%%4\) - <;‘SL%‘+1JD
2

2 sl 22 L)

2

= (S ] - IZLJ

S

1€S,S¢E
2
+ ;

2

Now we first prove that the vector v = (b} )1<icn
satisfying the following condition is in the polyhedron P,

(Sice o) = [Sicespin|
N

2

bB=b. . = bl =

It is straightforward to verify that b; satisfies the second
condition of the Py definition, thatis, > b, = f(E).

Note that
5) _2(Sice spean])” — (Sies sy )”
ST E
2 2
L [Zes s . T\Z%E Sjizn|
@(Z@ spetl) ~[Siepoag| @
- |5i]
0 (Sieespimongl) ~[Siee sy
- [E]
=1U;.

Since the function g(-) is continuously increasing, the
inequality (a) holds as ¢(S) < g(E). The inequality (b)
holds because |S| < |E|. For any set S, inequality
> icsbi <[S]f(S) is established, and thus the point
represented by vector b is in the polyhedron P;.

According to Cauchy-inequality, we have

N N 2
- >z &)
7] -3o0> &5

—
b*

)

.
therefore, b* is the minimum norm base of function g(-). O

The theorem above indicates that the algorithm does not
fit the AP selection problem under study. The theorem
shows that all the components in the minimum norm base
of f(-) are the same for the AP selection problem, which
makes |7;| = N in this case. This is to select NV elements in a
N-norm set, which is meaningless. In the theorem above,
we transform the function ¢(-) into f(-) =2¢9(E) — g(-),
which is a submodular set function but does not change the
essence of the problem.

4.2 Algorithm for AP Selection

We propose Algorithm 1 to solve the AP selection problem.
We are to first present detailed explanation of the algorithm
and then theoretically analyze performance of the algorithm.

Algorithm 1. Near Optimal Strategy for Fingerprints
Reporting

Require: complex number vector (z1,22...2,) where
zj = p;e'%(0 < ¢; < 27) represent the ith AP.
Ensure: A measurement sequence (ni,ns...n;), where
1 < n; < lrepresent choosing the n;th AP.
1: S« 0
2: w; =0(1<i<lIm)
3: 2 =1
4: fori =1toIlm do
5: o(i) — [ +1]
6: end for
7: fori=1toldo
8  fori e [Im]\S do
9: Wy — wj + Po(j)] 2*| sin® (¢ — arg(z"))

10:  end for

1T: " — argmax;c )\ s Wi
12: 2% = s40);

13: S~ Su{i*};

14: end for

15: return (o(i));.g

The input of the algorithm is an m-dimensional vector,
where each component of the vector is a complex number.
The complex number z; of the ith dimension represents the
characteristic of AF;. The output of the algorithm is an
l-dimensional vector, where each component of the vector is
an integer that is greater than or equal to 1 and less than or
equal to /. The output vector shows how many times each
AP should be measured in the online phase, e.g., the output
vector (1,2,2,3,1,1,4) indicates that: if there are totally
seven times of measuring opportunities, to measure AP
three times, AP, twice, AP; once and AP, once respectively
can obtain the most accurate location estimation. The order
of the measurements is not important, since the order does
not change the value of the objective function.
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In the algorithm, we first initialize the relevant intermedi-
ate variables to be used. We use set S to store the set of
selected APs; w; represents the weight of each element in the
set [lm]. The algorithm will continue to update the weights of
the elements in the following steps, which is the basis to
decide whether the corresponding AP will be selected. The
last variable processed in the initialization stage is z*, which is
also a complex variable and the initial valueis 1.

In the fourth row of the algorithm, we map the elements
in the set [lm] to a corresponding AP, which is for the rigor-
ousness of narrative. This is because the set function
requires each element in the set to be unique, but the finger-
prints reporting strategy studied in the paper allows an AP
to be measured multiple times. After the mapping, each ele-
ment in the set [Im] can be considered unique, and it is
straightforward that choosing element ¢ in the set [Im] is
equivalent to select AP with the index i( mod m).

The 6th and 7th rows of the algorithm represented by the
“For” loop is the main part. In the 7th and 8th row of the
algorithm, at the beginning of each loop, the algorithm
updates the weight w; of each element, increases it by
Po()|2*|sin*(¢; — arg(z*)), and z* are selected from the last
execution of each iteration.

In row 9, the algorithm selects the element with the larg-
est weight in the remaining elements, which is indexed by
1*. Then, the algorithm copies the i*th corresponding com-
plex number z;:) representing AF;+ to the intermediate
variable z*. Recall that finding the element with the largest
weight is factually finding the complex number z,+) that
can most effectively decreases the size of the ellipse as
described in Fig. 1 of Section 2. Let u; and w4, denote
the areas of the ellipses that the user will be localized in the
physical space when using APs in set {1,2...k} and
{1,2...k, k + 1} respectively, then we have

1 2w
w— =3 [ (RO = st (6)ae

9 2 1 1
=2c / k 9 2 - k+1 9o 2 de
0 doiipicos?(0—¢;) Yo picos? (0 — ;)
k
x Zpk+1pi sin*(¢y1 — ¢;).
i=1

This is the fundamental reason row 9 of the algorithm is so
designed.

In row 11, the algorithm merges the i*th element into the
set S, and then enter the next execution of the loop. After
looping [ times, we can get a set S of [ elements, and finally
we have the sequence (i), which indicates how many times
which AP should be measured in the online phase.

4.3 Algorithm Performance Analysis

We first define a new function h(,) : 2" x 2l — R, where
the arguments of the function consist two sets, and the value
of the function is a real number. For any two sets A, B,
the value of the function of the two sets is equal to the sum
of the results of the same operation between each corre-
sponding element in the two sets

h(A,B) = Z Po(i)Po(j) SN (Do (i) — Bo(s))- @)

€A jeB

There is close relationship between function h(,) and func-
tion g(-), as shown in the following lemma.

Lemma 1. For any two sets A € [lm] and B € [Im)],

g(AUB) = g(A) + g(B) — (AN B) + h(A\B, B\A). (8)

Proof.

g(AU B) = g(A\B) + g(B\A) + g(AN B) + h(A\B,AN B)
+ h(B\A, AN B) + h(A\B, B\A)
= [g(A\B) + g(AN B) + h(A\B, AN B)]
+ h(A\B,B\A) — g(AnN B)
+ [g(B\A) + g(AN B) + h(B\A, AN B)]
=g(A) + g(B) + h(A\B,B\A) — g(AN B).

(9)
According to the definition of A(,) and g(-), it is straight-
forward to verify each step of the formula above. 0

The lemma above provides a more precise description
of supermodularity. If we replace the equality with the
inequality of the function h(, ), it degenerates to the defini-
tion of supermodularity. We are to estimate the value of
h(,). In fact, estimating function h(,) is to measure how
“supermodular” the function g(-) is. Function g(-) is more
supermodular with A(, ) being larger.

For the convenience of observation, we first transform
the function A(, ) into the following:

WAB) = PowPoly sit* (o) — $o()
i€AmjeB
= Z [po(i) me sin®(¢,(;) — %(j))] .
i€A jeB
Note that
Doi) Zp(r(j) sin® (@) — o ;)
jeB
L (10)
=3 {pa(i) Zpa(j) —Re|s4() - Z Sv(j)} }7
jeB jeB

where Re(-) denotes the real part of a complex number.
Note that the right part of the equation Re[s,(;) * > cp So(j)]
is the real part of the product between complex number s, ;)
and the sum of all complex numbers in set B. It is obvious
that the equation is less than or equal to the product of the
complex number s,(;)’s norm and the norm of the sum of all

complex numbers in set B; therefore,

h(A, B) > Z Zpa(i)pa(j) - Z (prr(i) Z So(i)

icA jeB €A jeB
> < prr(i)) (Zpo(]’) - Z So (i) ) .
€A jeB jeB
Meanwhile, we note that
9(B)

Z So(i)| =

jeB

> ol —

jeB

Z,jeB Do(j) + |EjeB So(i) K
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thus we have
ZzGA po‘( )
_Z/eBp(r +|ZJ€BSUl |
@ XicaPoti
" 2)jenPoly)

h(A, B) > 9(B)
9(B).

The inequality (a) holds because [}, p
Similarly, we have

So(i)| < D jen Polj)-

> icp Poli)

h(A, B
( )722j€Ap0'])

g(4). (11)

We define a new set function A(-) : 2/l — R, then for any

set A, A\(A) equals the norm sum of all elements in set A4,
that is, A(A) = 3. 1 po(;)- Besides, we let m = minc () Po(i),
M = max;cpim) Poi) wh1ch will facilitate the following analy-
sis of the algonthm With the conclusions of the derivations
above, we have h(A, B) > ;;\Ei; g(A), and symmetrically we
have

Consequently, we have

>
B
5
v

v

min{g(A), g(B)}.

I
N — DN = | =
=)
=N
N
Naw
Q
=N
s
=

We here introduce another concept, curvature, to be used
in the approximation ratio analysis. Similar to the submodu-
lar function, the curvature of supermodular set function is
defined as following.

Definition 1. The curvature of a supermodular function g(-) is
- 9(5)
o= T Ey)
where g(E\j) = g(E) — g(E\j)-

Theorem 3. We use w,,; to denote the ellipse area corresponding
to the fingerprint reporting strategy yielded by Algorithm 1,
and ugy to denote the ellipse area corresponding to the optimal
reporting strategy, then

(12)

Uout < 1
Uopt - 1-—

=1 +g+0(52).

>

That is, the approximation ratio of Algorithm 1 is 1+ 3+
O(8%), and 8=1 — max{[(1 + 33)e~ 179 — g} (1 + g2y~ (179" —
A

Proof. Assuming that the optimal solution of the optimiza-
tion problem is the set S*. In the second “For” loop of the
algorithm, the algorithm will select an element 7*, adding
it into set S at the end of each execution of the loop.
We assume that the set yielded from step ¢ is .S;, which
partially intersects with S*

g(8") = g(S" U S;) + g(S* N Si) — g(Si)

Wo(s" U S) — g(Si\S")
— h(S™\S;, Si\S")

— h(S"\S;, Si\S")
— h(S; N 5", S:\S%)

W5 US) — g(S)\S*) — h(S*, 5,\5")
<o+ 55 (g(50) — g5) - 518
— h(S", S\ 5)
a5+ 52 i) - 0(5) ~ Sy o),

(13)

Merging ¢(S*) from both sides of the inequality, we
have the following result

(555

IS*\SI
1-

9(Sit1) + (1 - lf*f\i") 9(S).

After appropriate transposition, we can transform the
inequality into
A(S;\8%)

L+ 55 1—«
9(Siy1) > —mer—9(5") — (*7
+ 5715 15\

— l)g(Sz;).

We can regard the inequality above as an iterative
inequality of the set .S;, and now we do some transposi-
tion to the inequality as following:

(08745

< (1~ e (e o o0

Using the formula above, we can perform the compu-
tation iteratively until reaching the case of i = 0. Note

(14)

that Sy = 0, thus the following inequality holds for any i
AN oy _ g
(1+ %y o657 - a(5)
- (15)
ASAST g T
< —_— 7
: (1 e )OI { |S*\S )

7=0

In particular, if ¢ = [, we have

Jj=0

(§<1 —-(1 ;:g')l) (1+%>9(S*)

20 (pondy) ) (™ s

The inequality (a) can hold because increasing |.S*\.S;|
to [S*\/S)| will make the entire equation smaller in value.
According to the definition of function A(-), we have
A(S\S*) > |S\S*|m and A(S*) < |S*|M =M, thus the
inequality (b) also holds. Note that |S;| = |S*| =, thus
[S*\Si| = |S/\S*|. We use k to represent the number of
elements in the two sets. One more step and we will have
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the following;:

9(S1) 2(1 - (1 L ;")1) (1 +2kz_ﬂz\l4>9(5*)
21—t (1 N 2’%) (s
Q%l—e%*ﬁ)< QAH)“Sw'

As (1 -1 < e_(lT-w, inequality (a) holds. Note that
the right hand side of the inequality is actually a function
with respect to k. For the convenience of demonstration,
we let the variable ¢ = {, and we have equation (b) with
t€[1,1]. Let q(t) = (1 — e~ 79")(1 + £, and we find the
minimum of ¢(¢) by finding ¢’s derivative. Although ¢ is a
discrete variable according to the definition of ¢, we can
relax it to a continuous variable when finding the
extreme of the function; therefore, the analysis can be
facilitated by the derivative. The first order derivative
of ¢ in function ¢(-) is

da(t) _ e (1L~ (2 + 35 + 5] — oy
dt 12 '

We use ¢i(-) to denote the numerator of the formula
above, and find the derivative of function ¢ (-)

) S}

dt
It is stralghtforward that 0¥ >0, %0 >0 when

. dql(t) 2
0<t<Z -3 <0, when' t > 27]’\} This indi-

cates that q(t) have at most one zero pomt therefore,

q(t) = min{q(1), ¢(1)}

= min{ (1 - e*“*K)) (1 + W)
(1 —e (1790 <1 +m>}

=1-3,

= (1 — K)te 170 [2

where § =1 — max{[(1 + 32)e 179 — ] (1 + f)e (1=~

717} Based on the results above, we have
8c?

\/(25165[ ‘si|>27|251631 5[.‘2 < 1

= V0N

2 2
V(e 1) 15 e o

Uout _

uopt

Note that the Taylor expansion of function ﬁ at

r=0is

L 1+i(—1)iwxi —1-24+0(?),

therefore,

The approximation ratio is 1+ 2+ 0(8%), and § =1~
max{[(1+ Fiz)e” ™ = 5, (1 + fip)e - 9= k- 0

The algorithm analysis above indicates that every time a
new element is picked out from the remaining set, the area of
u of the ellipse is constantly decreasing, which means that the
accuracy is getting higher and the corresponding difference
from the optimal value is decreasing. If the number of selected
elements has reached [, when continuing to select the new ele-
ment to add in according to the selection method of the algo-
rithm, the error will continue to be reduced. It is easy to verify
that the inequality (15) derived from the analysis above also
holds for the situation of ¢ > [. We have

) (1 (-5 o

)‘(57\5*) /(l *
W)(l_ ~ng(SY).

o(5) > (1+

2(1+
2<1+

For any given constant ¢ close to O, g(S )>(1+
A (1 — e 179hg(57) > (1—@my)ﬁz>lm That is,

if the number of reported signal fingerprmts is large enough

(1 4+ 28080y (1 — e 0-9)g(5") > (1 - e)g(57),

then the final localization accuracy is at most 1 — ¢ times
worse than the optimal value.

Now we briefly analyze the time complexity of the algo-
rithm: it is obvious that the algorithm is with polynomial com-
plexity. In the rows 4 and 5 of the algorithm, which is the
element mapping stage, there are Im loops, with each can be
finished in O(1), thus the complexity is O(lm). Inrows 7 to 11
of the algorithm, the dominant factor of the complexity is the
“For” loop to update weights, which is nested in another
“For” loop. The execution of each loop needs time complexity
of O(lm). The complexity of the algorithm’s rows 6 to 11 is
O(I?>m). Finally, during the algorithm calculating the sequence
of returned values, for all elements in set S, the corresponding
AP must be found, for which the time complexity is O(l). Con-
sequently, the overall complexity of the algorithm is O(/>m).

to make ¢(S;) >

5 APPLICATIONS OF THE BEST STRATEGY

5.1 Location Estimation Leveraging Best
Fingerprints Reporting Strategy

The best fingerprints reporting strategy is dependent on the
setting of the physical space that needs localization services.
Given the indoor space with fixed AP deployment, the best
strategy for each location of the space is deterministic and
can be derived using the proposed algorithm. Consequently,
the best strategy of a location plays a role similar to the local
fingerprints stored in the database, which may distinguish
one location from another. However, the best strategy is intu-
itively less sensitive than fingerprints in discriminating one
location from another, especially in a small vicinity. Recall
the complex vector characterizing an AP, which in essence
represents the relative position of the AP with respect to the
target location. Since the distance and angle of neighboring
locations with respect to surrounding APs are almost the
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Fig. 2. Location determination facilitated by the best strategy.

same, best reporting strategies for such locations should be
the same.

Such a seemingly frustrating phenomenon factually also
can be leveraged to reduce errors in location estimation.
Empirical studies show that the estimation errors of pure
fingerprinting based localization system could be over 6m
[9], [37], [38]. The root cause of such large errors is that
physically distant locations may share similar Wi-Fi signal
strength, which is due to the dynamic propagation of radio
signals. However, the feature of the best strategy described
above provides an opportunity to mitigate the impact of
such errors. Although multiple faraway locations may have
similar fingerprints, their best strategies for fingerprints
reporting could differ from each other, because their rela-
tive positions with respect to surrounding APs are different.

It is worth mentioning that the existing solution to deal
with the fingerprints similarity is to utilize the k-nearest
neighbors (KNN) algorithm [2] or the acoustic ranging esti-
mations performed among peer smartphones; however,
KNN is a machine learning approach without any theoreti-
cal basis for localization, and the acoustic ranging requires
collaboration among users [9], [37].

Exploiting the best strategy can reduce large localization
errors without consuming extra resources in users’ devices.
We propose Algorithm 2 to implement a location estimation
approach facilitated by the best strategy. We are to provide
a walk-through of the algorithm using the example shown
in Fig. 2. Moreover, our analysis of the algorithm will show
that the localization accuracy can be improved not only for
reducing large-scale errors, but also for discriminating loca-
tions in a small neighborhood, where cases 1 and 2 in Fig. 2
are used to represent such two scenarios.

The basic idea of the algorithm is to first roughly deter-
mine a set of candidate locations. The user measures APs
that are included in the best strategies for all candidate loca-
tions in each iteration. The server can then reduce the esti-
mation uncertainty according to the reported fingerprints in
each iteration and finally localize the user.

As shown in Fig. 2, the user reports a fingerprint consisting
RSSes with respect to AP, to AP;. The server calculates the
euclidean distance between the reported fingerprint and
the fingerprint associated with the location A, B and C in the
database respectively, through which the server finds that all
the three locations are matching the reported fingerprint.
We consider the case 1, where the best strategy associated
with each location is distinctive because the three locations

are faraway from each other. The number in the best strategy
means the number of times each corresponding AP should be
measured. The server finds that AP; is included in all three
best strategies, and then asks the user to measure AP;. After
matching the reported fingerprint with respect to AP;, the
sever finds that the location C’s fingerprint with respect to
AP; in the fingerprints database is the worst match to the
reported one, C' can be deleted from the candidates list. Com-
paring the best strategies of the remaining location candidates
A and B, they have AP, in common. The server asks the user
to report another fingerprint with respect to AP, and the
worst match is also deleted.

Algorithm 2. Location Determination Strategy

1: Get initial estimated locations {r.}, {cAP}" = @.

2: Initialization(set counter ¢ = 1 and calculates
{CAPL}f‘_ﬂ{rH}{V;(T)})-

3: while Radius of {r.} < r* do

4 if [{cAR}' — {cAP,}'"!| # 1 then

5 Set {nAP} as the AP that appears most frequently.
6: else

7: {nAP} — {cAP}\{cAP}",

8: endif

9:  Report RSSes for AP in {nAP}.
10:  Update distance matrix D; = |RSSes, u(r;)|.
11:  Get new estimated locations {r.} « {r;}, D; < d*.
12:  Increment counter ¢t = ¢ + 1 and recalculate candidate
APs {cAP} — (., {Vi(r)}.
13: end while
14: Return estimated location ry = Hr—le}l Si{re}.

Now we consider the case 2 in Fig. 2, where the best strat-
egy associated with each location is the same because the
three locations are in a small neighborhood. In this case, the
server asks the user to report a fingerprint with respect to
AP;, because AP; appears most frequently in all best strate-
gies. In this way, the server still can cross check fingerprints
reported from the user multiple times and find the best esti-
mation. The performance evaluation presented in Section 6
is to show the effectiveness of such an algorithm.

A key issue of the algorithm is when the iteration should
end. The server could execute the iteration until it converges to
only one candidate location. It can also end the iteration when
the candidate locations are within a certain region denoted by
r*. For example, in case 2 of Fig. 2, if r* is set to be larger than
the distance between the three locations, then the iteration will
end, and the location that is equally distant to each of the can-
didate points is returned as the estimated location. The conver-
gence rate of the algorithm is determined by d*, which shows
in each iteration how many candidate points will be accepted
to the next iteration. In most cases, d* can be set with respect to
the number of measurement times. If the measurement time is
Ny and there are [ candidates, then we can set d* so that only
log y, ! points will be selected to enter the next iteration, then
after at most IV rounds, the iteration will end.

5.2 Strategy for AP Deployment

Wi-Fi APs have been widely deployed in public indoor
spaces, where coverage is an important issue. Bai et al. pro-
pose an AP deployment scheme based on evolving dia-
mond pattern, which presents the minimum required
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number of APs to cover an area [39]. As location based ser-
vice is gaining increasingly popularity, it could kill two
birds with one stone if the deployment of APs take both
coverage and localization into account, especially for newly
constructed public buildings. Battiti et al. [40] propose a
heuristic search method that integrates coverage require-
ments with the reduction of localization error, where the
error is estimated relied on simple radio propagation
model. While AP coverage problem is closely related to AP
deployment problem for localization, the fundamental rela-
tionship between the two problems has yet been revealed.

5.2.1 AP Deployment for Localization

If we want to find the best strategy for fingerprints reporting
at location 7, the deployment of APs has to be given; there-
fore, it seems to be a paradox to determine the optimal AP
deployment based on the theory of the best strategy. Our
basic idea is to search over all possible AP deployment solu-
tions, in order to find the solution that can offer the best
localization performance. Such AP deployment solution is
the best for localization. The crux of the idea is to evaluate
the performance of localization based on the best strategy
for fingerprints reporting, which is denoted by

2 2

> 1zl >z,

1€V, 15 %

(16)

where V; is the index of measured APs determined by Eq. (2).
This is because the larger R(7) the smaller ellipse can be
obtained (recall Fig. 1) thus the higher localization accuracy
can be achieved. Here note the difference between Egs. (2) and
(16). In the discussion of AP deployment problem, we assume
that the system always follows the best fingerprints reporting
strategy, so that the system accuracy can be maximized.

Eq. (16) indicates that the change of APs’ locations results
in change of V(7). We use {z;,y;} to denote the location
of APH and {f7 17} = {(Ib y1)7 (.1‘27 y2)7 B ($N7 yN)} to denote
locations of APs. Consider the localization performance at
location 7, which is denoted by R(7). Suppose the user
appears in locations following the probability density func-
tion denoted by f(7), the expected performance of localization
in such a specific setting is [ R(7) f(¥)dr?. Consequently, the
optimal strategy for deploying APs is to fix APs in the follow-
ing locations:

{79} = argmax/ R(7) f(F)dr?, 17

{Zgy  JS

where S is the area of the indoor space. This provides
fundamental criteria to evaluate different AP deployment
strategies for the purpose of localization.

The challenge for resolving the problem above is that the
searching space for optimal {Z, §} is continuous. In practice,
we are unable to search the physical space in an inch-by-inch
manner, thus we can limit the locations of APs in discrete
positions. Consequently, the problem can be transformed into

(#,7)" = agmax [ REOO,
{EJc{X Y}/ S

(18)

where {X, Y’} denotes the discretized physical space.

The transformed problem can be resolved by a simulated
annealing based algorithm as shown in Algorithm 3.

Algorithm 3. AP Deployment Strategy

1: Initialize {Z, §}(Select ¢ locations randomly).

2: while T} > t* do

3:  Generate new strategy by randomly change one location
in {Z, 7}.

4:  Calculate expected reliability H for the new and old state.

5:  Accept the new state accordmg to H,,., and H,q with
probability min{1, efr}

6: Update temperature 7;.
7: end while

8: {&, 5} — {Z,7}.

5.2.2 Localization and Coverage

In previous work in the literature, access point deployment
problem is considered as a coverage problem, however, for
the performance of localization, AP deployment can be fur-
ther discussed so as to meet the accuracy needs. If a specific
AP deployment strategy guarantees that each point in the
area can be localized correctly, then each point is surely cov-
ered by APs, which means every point can receive signals
higher than the given strength.

Theorem 4. If an AP deployment plan in a region with area D
satisfies the localization accuracy R*, then every point of the

region must be covered by at least one AP within the distance

\‘;{i\]—}?* and there must be at least 2"\/“'T*( — 2) APs need to

be deployed; however, if a user is definitely covered by at least
one AP at any point of the region, it is still possible that the
localization accuracy can not be satisfied.

Proof. The first part of the theorem is to prove that
VR*,V Ny, 3d, such that if YP,VAP, € U;,d(P, AP, > d,

then R(p) < 14 0. where P is a point in the region and
o = min;{o; }.

According to (16), the localization accuracy is deter-
mined by the characteristic vector of the AP, thus

2 2 9 2
P) < (;w) (va> - (Zv—(v:é) )

2
1 N§
Z 5| S
i d'o
The equality in (19) holds when the location is at the center
of several equidistant APs with the same RSS variance o.

If a point can be localized with required accuracy level

R*, then there must be an AP within

(19

\/V[ :][;*. To guarantee
o
that every point lies in a coverage range of some APs, the

AP deployment strategy must satisfy JAP; € U;, d(P,

AP) < v .

Vi - .
The second part of the theorem is equivalent to finding

the minimum required number of APs to cover the area

given the minimum required distance d. Since the space

requires indoor localization service can be divided into
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Fig. 3. Experiment field.

small square areas, the problem is reducible to circle cov-
ering problem which has been proved by Kersher [41].

With Kersher’s theory that the least number of circles
with radius a denoted by v/(a), satisfies

() > 23 (D~ ona)

9 (20)

where D denotes the area of the rectangle. Together with
(19), we finally get the minimum required number is

20V 3R*

_— 21
ON: (21

o> (D —-2).

We now give a counter example showing that the locali-
zation accuracy can not be satisfied, while the coverage is
satisfied. Assume there are k APs collocated collinearly,
every point will be covered if access points have enough
power, however, it is impossible to localize the user if the
user is standing on any point of the line. This is because the
small displacement along the line is with indistinguishable
changes in RSSes. If the user moves along the line, it is
impossible to localize where the user is. ]

Eq. (21) shows the minimum number of APs required is
determined by several factors. When the signal channel is
clearer, i.e., o is smaller, the number is smaller. Moreover,
the decrease of measurement times N, brings the same
impact. Moreover, when the required reliability becomes
higher, the required number is larger, which increases pro-
portionally to the square root of the reliability.

6 PERFORMANCE EVALUATION

In this section, we evaluate the proposed algorithms with both
local and trace data experiments. We conduct local experi-
ments in an area of our university’s library as shown in
Fig. 3a. The area in the red frame is grided into 10 x 11 cells
and the edge length of each cell is 70 cm (Note that the black
nodes represent pillars.). The APs used in the experiment are
uniformly distributed along the edges of the region first, as
those blue triangles shown in Fig. 3b, and then deployed
according to our proposed AP deployment strategy, as those
red crosses. We also conduct experiments with the trace data
collected by the EVARILOS testbed [46]. The data are col-
lected in an unmanned utility room with many metal objects
termed as “Zwijnaarde”, where there is almost no outside
interference and no persons are present in the environment.
Detailed descriptions of the testbed and data could be found
in [47], [48], [49].

Performance of AP Selection Strategies in CDF. We first verify
that the proposed best fingerprints reporting strategy indeed

1 1
i =]
0.8 et 0.8 o
o
o o
LDL 0.6 o~ |-©-BestStrategy E 0.6 StrongestMax
(&) 0.4 g ——StrongestAve o 0.4 ——StrongestAve
’ StrongestMax ’ o Similarity
0.2 o Similarity 0.2 -©-BestStrategy
—+-GD —--GD
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Localization error(m) Localization error (m)

(a) Resutls of local experiments.  (b) Results of trace data experi-

ments.

Fig. 4. Results of localization.

can improve accuracy of localization. We compare the locali-
zation results with the best strategy and that with other strate-
gies. If we measure every AP’s signal strength at each location
of a space, then APs with strongest average signal strength
over different locations can be obtained, and the APs with
strongest signal strength all over the space can also be
obtained. StrongestAvg strategy is to always measure APs
with strongest average signal strength, and StrongestMax is to
always measure APs with the strongest signal strength. Simi-
larityBased strategy calculates the similarity matrix of APs and
always measures APs with the lowest similarities, where the
detailed description of the scheme could be found in [7].

The three strategies mentioned above are to select each
AP based on the AP’s own importance, where the APs’
group effect is not taken into account. We note that a group-
discrimination based (GD) AP selection mechanism is pro-
posed recently [21], where the positioning capabilities of a
group of APs are investigated. The basic idea of the GD
mechanism is to find the best combination of APs, and use
the fingerprints generated by those APs as the feature of
each location. We also compare our proposed BestStrategy
with the GD mechanism. In the experiments, we select the
best combination consisting of 6 APs according to the GD
algorithm in [21], and use the fingerprints of those 6 APs to
distinguish one location from another in the offline phase.
We also use the fingerprints from the same 6 APs to perform
the online phase to estimate the device location.

Fig. 4a shows results of the local experiments, where the
horizontal axis represents the localization error observed and
the vertical axis represents the corresponding cumulative dis-
tribution function (CDF) value. In the experiment, we deploy
20 APs in the area with our best deployment strategy as
shown in Fig. 3. Under such setting, we perform localization
in 100 randomly-selected points. The results show that the
best fingerprints reporting strategy yielded from our algo-
rithm outperform other strategies. Fig. 4b shows experimental
results with the trace data from the EVARILOS testbed. Since
the deployment of APs and landmarks could not be changed,
we just evaluate the AP selection strategy. We use the data
observed at a part of the landmarks as the training set and
that observed at the rest of the landmarks as the test set to
perform localization. The results corroborate our local experi-
ment results. Our proposed algorithm outperforms others
because other strategies just exploit the statistical properties
of the fingerprints, but our strategy is based on the intrinsic
mechanism of fingerprinting localization.

It is shown that our proposed mechanism still outper-
forms the GD mechanism. This is because the process of
finding the best combination in [21] is based on empirical
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metric. According to our theoretical analysis, the number of
times for measurements with respect to each AP is also
important, which however is not taken into account in GD
[21]. It is noted that the performance of the StrongestMax
and StrongestAvg are almost the same in both the EVARI-
LOS data experiment and the local experiment. This is
because a large proportion of APs selected by the two strate-
gies are the same. If we use the localization accuracy of CDF
80 percent as the benchmark to evaluate the algorithms’ per-
formance. It shows that at 80 percent of the time in our local
experiments, the localization error is within 2.2 m and 3.5 m
with the BestStrategy and the second best GD strategy,
respectively. In the trace data experiments, those numbers
become 13 m and 17 m. That is, the BestStrategy outper-
forms the GD strategy by around 37 and 24 percent in the
local and trace data experiments, respectively.

Performance of AP Selection Strategies in Error Map. Fig. 5
illustrates how the localization errors are distributed in the
local experiment field. The experiment results with respect to
the three strategies all confirm the results in [7]. Moreover, the
results also indicate that the best strategy indeed incurs the
smallest localization errors. Fig. 6 illustrates how the localiza-
tion errors with selected mechanisms are distributed in the
EVARILOS experiment field and the local experiment field.
We select the BestStrategy, GD and SimilarityBased strategies.
The experiment field of the EVARILOS testbed is a
56 m x 15 m rectangle space, and each cell in the figure repre-
sents a 6 m x 3.2 m space. All the experimental results show
that the proposed BestStrategy outperforms other strategies.

It is worth mentioning that our experimental results are
just based on pure fingerprints comparison; other assisting
mechanisms such as motion sensors and acoustic ranging as
described in Section 2 are not included. This is because the
purpose of the paper is to investigate the fingerprints report-
ing strategy. Moreover, the results of trace data experiments
are not as good as that of local experiments, this is due to the
limitation of the trace data. It could be found in the data set
that there are only a few RSS readings recorded on some land-
marks, and at some landmarks, the RSS readings are exactly
the same. This is perhaps because the data are collected by the
automatic robot as described in [46].

AP Deployment Strategy. We conduct experiments to exam-
ine the effect of our propose AP deployment strategy. In the
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Fig. 6. Error map of selected algorithms.
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experiment field as shown in Fig. 3, we deploy 20 APs in two
ways, where the first is to deploy them uniformly along the
four edges, and the second is to follow the proposed AP
deployment strategy. We then perform localization in the
area for 100 times at 100 randomly-selected points. The results
of localization are illustrated in Fig. 7, where the curve repre-
senting uniform deployment is labeled with “SquarePattern”.
It is straightforward that the proposed deployment strategy
can help improving the localization performance.

Energy Consumption. We conduct 1-hour experiment with a
HUAWEI MT7-TL00 and a Nexus 5 smartphone to measure
power consumption of RSS fingerprints reporting strategies.
We examine two kinds of strategies, where the first one selects
6 APs using our proposed algorithm, and the second one
selects all 20 APs. For each strategy, we let the smartphone
report the observed RSS fingerprints every 500 ms. Consider-
ing that the best strategy may vary in different locations as
explained in Section 5.1 when the user is moving, we recom-
pute the best strategy every 2 s to make sure the best strategy
for each location is updated in time. This process lasts for 1
hour, during which the power consumption results are
recorded using both the PowerTutor [50] and the Trepn
Power Profiler APP [51] every 5 minutes. The results are
shown in Fig. 8. Since the two kinds of smartphones tailored
the Android OS in different ways, their basic energy con-
sumptions are different; moreover, the energy consumption
models adopted by the two APPs are different [50], thus the
results by the two different APPs are not the same. However,
it is clear that the energy consumption results of the two strat-
egies in different scenarios are almost the same, which means
that the energy consumption incurred by the computation of
our strategy could be negligible.

1 &
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G
—&— ProposedDeployment
0.2
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Fig. 7. Localization error CDF for purposed deployment strategy.
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7 CONCLUSIONS AND FUTURE WORK

This paper have investigated how to optimize the fingerprints
reporting strategy to improve localization accuracy, and how
the optimal strategy theory can be utilized to streamline the
design of WLAN fingerprinting localization systems. In par-
ticular, we have revealed that the fingerprints reporting prob-
lem is essentially an NP-Hard size-constrained supermodular
maximization problem. We have proposed a new algorithm
with a theoretical analysis of the corresponding approxima-
tion ratio. Moreover, we have demonstrated how the optimal
strategy theory can be utilized to improve accuracy of location
estimation by resolving the issue of similar fingerprints
for both faraway and close-by locations, with an iterative
algorithm developed to cross check fingerprints sampled in
different locations, in order to derive the best possible result
of localization. Further, we have revealed the relationship
between accuracy of location estimation and coverage of
Wi-Fi signals in indoor spaces when planning deployment of
APs. We have presented comprehensive experiment results
to validate our theoretical analysis. Our future work will focus
on examining the influence of environmental change on the
performance of fingerprinting based localization systems.
We will pay particular attention to the human body shadow-
ing effect with the corresponding aggravated multipath effect,
which are supposed to change the noise level of the space
dramatically.
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